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Optimization of coupling from a sub-wavelength nanoaperture to the

fundamental Gaussian mode
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We minimize scattering losses and maximize coupling to a given free-space mode from a sub-wavelength metal
aperture surrounded by periodic and aperiodic corrugations via optimum choice of the parameters of the
structure. We show that introduction of aperiodicity into the corrugations enables coupling to a Gaussian mode
T4 64%, which is twice as high as that obtainable from the best periodic-corrugation design. These results
indicate the possibility of using such metal nanostructures for quantum- and nonlinear-optical applications.
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1. Introduction

The sources of single photons on demand are impor-
tant for quantum information processing, such as
quantum key distribution, quantum communication
via teleportation, and quantum computing based on
linear optics. Making such sources involves building
structures in which one unit of active material (e.g.
atom, quantum dot, etc.) interacts only with a small set
of optical modes, which requires the use of small-
volume microcavities. In these structures, spontaneous
emission can be enhanced and a considerable portion
of it can be channeled into one optical mode (Purcell
effect), if the ratio Q=ðV=�3Þ is high, where Q is the
cavity Q-factor, V is the mode volume, and � is the
emission wavelength in the medium. In addition, high
collection efficiency of the emitted photons is required.

One promising approach to building single-photon
sources, as well as to obtaining enhanced nonlinear-
optical effects is to use metal nanocavities. Indeed, in
contrast to semiconductor or dielectric resonators, the
metal cavities can easily confine light to extremely
small volumes (V� �3) with finesse on the order of
102. This can be done, for example, by using an open-
ended metal box resonator with dimensions
’a� �=23=2 � �=21=2, where a� �, because its funda-
mental TE101 mode does not have a cut-off [1].
Placement of a fluorescent source at electric-field
maximum in such a metal nanocavity would result in
dramatic enhancement of the light–matter interaction
due to very tight light confinement. The critical issue
for such sub-wavelength structures, however, is the

efficiency of coupling the light in and out of them into

a desired free-space mode without much loss due to

scattering to other modes. Surrounding the open end
of the nanocavity (sub-wavelength nanoaperture) with

periodic corrugations can concentrate the emission

pattern into a narrow range of angles, as was demon-

strated experimentally in [2].
In this paper, we investigate quantitatively how

much light can be coupled from the nanoaperture to a

well-defined macroscopic mode (e.g. a fundamental
Gaussian beam) and how much is lost due to scattering

into higher-order modes. The possibility of good

coupling would make the metal nanocavity structures

compatible with low-loss fiber delivery (the fiber mode

is close to Gaussian). In [3,4], we extended the

first-principles approach of [5] and [6] to calculate
30% coupling efficiency and 30% loss to higher-order

modes (with the remaining 40% reflected back into the

nanocavity) for the slit and corrugation parameters

taken from [5] and corresponding to maximum total

coupling of light from the sub-wavelength slit into the

free space. This set of parameters optimized for total
coupling may not, however, be optimum for Gaussian-

mode coupling (i.e. scattering to higher-order modes

may be too high). This calls for a separate calculation,

where the corrugation period d and depth h, number of

corrugations on each side of the slit N, and position of

Gaussian beam waist z0, are optimized for various
wavelengths of light �, with the explicit purpose of

maximizing the Gaussian-mode coupling and minimiz-

ing the loss due to scattering into other modes.
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Preliminary results of this optimization work were
shown at a conference talk [4], and the detailed report is
presented in this paper. In addition, we describe an
extension of ourmodel to aperiodic corrugations, which
results in improved performance and also allows one to
maximize the coupling at multiple wavelengths (e.g.
useful for enhancing nonlinear-optical interactions).

2. Model of nanoaperture with periodic corrugations

We consider the 2D arrangement shown in Figure
1 (a), where a TEM excitation from a sub-wavelength
slit made in a metal film, couples to the free space. The
slit is surrounded by a periodic pattern of corrugations
(grooves) symmetrically on both sides. References [5]
and [6] investigated the interaction of such a structure
with plane waves and, consequently, were only con-
cerned with relative enhancement of light transmission
through it compared to the non-corrugated case. We,
on the other hand, study the interaction of this
structure with the fundamental Gaussian mode and
are interested in the actual value of the coupling

coefficient and the percentage of loss due to scattering
into other modes.

We start with the approach of [3] where the field
emitted by the sub-wavelength slit of width a¼ 40 nm
is calculated similar to [5] and then projected onto a
cylindrical Gaussian beam. In accordance with [5] and
[6], we assume perfect metal boundary conditions
(lossless metal) and the groove/slit width a� �. Then
for p-polarized light, the grooves act as metal slab
waveguides supporting only the fundamental TEM
mode. We consider the light emerging from the slit
through the corrugated face of the metal film (serving
as the output coupler from the nanocavity), ignoring
the opposite side of the film (which can be incorpo-
rated later on by simple Fabri-Perot formula). A self-
consistent system of equations [5] calculates the field
amplitudes E� at each corrugation with index � ¼
�N, . . . , þN (�¼ 0 is the slit). The total transmittance
from the slit to free space is Ttotal¼ 1� j1� E0=A0j

2,
where A0 is the amplitude of field traveling inside
the slit.

Thus, we need to solve the system of equations
from [5],

G�� � ��ð ÞE� þ
X
�6¼�

G��E� ¼ 2iA0��0, ð1Þ

where � and � indices are running from �N to þN,
with �� ¼ 1= tan kh for � 6¼ 0 and �� ¼ �i for �¼ 0,
k ¼ 2�=�,

G�� ¼
ik

2

ðþ1
�1

ðþ1
�1

���ðxÞH
ð1Þ
0 ðkjx� x0jÞ��ðx

0Þdxdx0,

ð2Þ

mode functions ��ðxÞ ¼ 1=
ffiffiffi
a
p

within the �th corruga-
tion and ��ðxÞ ¼ 0 outside of it, and H

ð1Þ
0 being the

Hankel function.
The lowest-order (fundamental) 1D Gaussian mode

TEM0 has the form

gðx,zÞ ¼Gaussianðx,zÞ ¼
exp �1

2
kx2

ka2
0
� i z�z0ð Þ½ �

n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a20 1þ z� z0ð Þ

2= ka20
� �2h i

4

r ,

ð3Þ

where a0 is the beam waist size also called the 1/e
intensity half-width, and z0 is the focal position where
this beam waist occurs. We assume the mode to be
propagating in the �z direction (for þz, replace k by
�k), and to be normalized to 1:

Ðþ1
�1
j gðx, zÞj2dx ¼ 1.

With N grooves on each side of the central slit, the
main equation (Equation (1)) is a matrix equation
representing a linear system of (2Nþ 1) equations for
(2Nþ 1) unknowns E�, coupled via Green’s function
matrix G�� � �� to the input excitation A0.
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Figure 1. (a) Notations for the modeled TM wave near metal
nanoaperture. (b) Coupling T as a function of the groove
period d and wavelength � for the scaled-waist
case (Gaussian 1/e intensity half-width a0 ¼ 1400 nm�
�=560 nm) with N¼ 1 (one groove on each side of the slit).
Each point on the graph was optimized over groove depth h
and position of the Gaussian beam waist z0. Color scale is in
decibels (10 log10). (The color version of this figure is
included in the online version of the journal.)
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An important fact is that the resulting matrix
G�� � �� has a Toeplitz structure, in addition to being
symmetric around the main diagonal. This allows fast
evaluation of the matrix elements, which helps in
subsequent extensive optimizations.

It is convenient to calculate the coupling T to the
above Gaussian mode by the far-field overlap integral
over azimuthal angle 	:

T ¼ jtj2 ¼

Ðþ�2
��2
g�ð	ÞHNorm

y ð	Þ
��� ���2d	

jA0j
2

: ð4Þ

In Equation (4), the Gaussian profile is

gð	Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ðka0Þ

2

�

4

s
eikz0 cos 	e�ðka0	Þ

2=2, ð5Þ

with the sign convention such that z050 is in front of
the corrugated side, and

HNorm
y ð	Þ ¼

ffiffiffiffiffiffi
ka

2�

r
sin½ðka sin 	Þ=2�

ðka sin 	Þ=2

XN
�¼�N

E�e
�ikd� sin 	

ð6Þ

is the far-field pattern of the emerging radiation.
We note that the fields in Equations (5) and (6)

are normalized so that
Ð �

2

��2
j gð	Þj2d	 ¼ 1 andÐ �

2

��2
jHNorm

y ð	Þj2d	 ¼ A0j j
2Ttotal:

In the optimization, we can adjust the wavelength
�, groove depth h and period d, and location of the
Gaussian beam waist z0 to meet the requirements on
the coupling T, loss L, total transmittance to free space
Ttotal ¼ Tþ L, and reflectance back into the slit
R ¼ 1� Ttotal.

Let us note that the assumptions made in this model
restrict the quantitative accuracy of its predictions for
real metals with complex refractive indices. However, its
simplicity offers orders-of-magnitude speed-up com-
pared to the full numerical solutions and enables quick
observation of key parameter dependencies and rapid
coarse optimization of the corrugated structures. The
fine tuning still requires full numerical modeling and
experimental feedback.

3. Model extensions to corrugations with aperiodic

spacing and non-uniform depth

A nanoaperture with aperiodic corrugations may
provide additional degrees of freedom to further
increase the coupling to a Gaussian mode. In the
aperiodic model, the groove period is allowed to vary
(d� 6¼ d� in general), but we still assume the symmetric
geometry (d� ¼ d��) around the central groove 0.
Intuitively, aperiodic grooves can help adjust the phase
of the radiation to better match the Gaussian mode

TEM0, increasing the overall coupling. Another reason
to study the aperiodic case is to model realistic
nanostructures, which are fabricated within certain
practical tolerance.

The equations presented above need only a slight
modification for the aperiodic case, and the numerical
results are easily obtained. Specifically, to capture the
effect of aperiodic groove width, d� should be replaced
by

P�
i¼1 di in the calculation of the elements G�� in

Equation (2) and of the far-field in Equation (6).
The non-uniform groove depth model is exactly the

same for periodic or aperiodic groove widths, and only
the values �� are changed from 1= tan kh to 1= tan kh�
(while keeping h� ¼ h��). Thus, the depth non-
uniformity can be imposed independently of the
aperiodicity of the groove spacing.

The number of parameters that can be optimized in
the aperiodic spacing and/or non-uniform depth case
scales with the number of grooves and can be quite
large. Since the search space over various parameters
of the design is disjoint (certain designs are forbidden)
and abundant with local maxima, we use direct search
techniques like genetic algorithms (GA) combined with
local search (gradient descent, Nelder-Mead) methods
in a hybrid scheme to achieve the non-obvious optimal
designs reported here. Hybrid GA schemes are supe-
rior to simple GA in terms of avoiding premature
convergence and maintaining rich diversity in popula-
tion to explore several local maxima, and climb the
hills in design space that lead to the global maximum.
Hybrid GA along with the aperiodic spacing and non-
uniform depth models enables the following design
capabilities:

. maximize or minimize any of T,T /L,R ¼
1� Ttotal at a given wavelength for aperiodic
groove spacing and depth;

. optimization constrained by multiple criteria
at a given wavelength;

. joint optimization of resonant structures for
multiple wavelengths.

4. Results

First, we present the results corresponding to the
periodic corrugations. Given the fact that in the
practical situation the minimum obtainable Gaussian-
beam waist size should scale proportionally to the
wavelength, we consider two cases: in one the beam
waist a0 ¼ 1400 nm� �=560 nm scales with the wave-
length (scaled-waist case) and in the other it is fixed at
a0¼ 1400 nm (fixed-waist case). Both cases are chosen
to yield the same result at wavelength �¼ 560 nm. The
results of the calculations, optimized over corrugation
depth h and position of Gaussian beam waist z0, are
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shown in Figure 1(b) and Figure 2 for the scaled-
waist case and in Figure 3 for the fixed-waist case,
respectively. It is clear from Figures 1(b), 2 and 3 that,
unlike the total coupling to free space Ttotal, the
coupling T to a Gaussian beam has only one main
maximum corresponding to the optimum corrugation
period d ¼ 0:85 � � � 0:9 � for the scaled-waist and
d ¼ 0:8 � � � 0:85 � for the fixed-waist cases. In the fixed-
waist case, the maximum ratio T /L of coupling to loss
is realized for long wavelengths, which is a byproduct of
having a constant beam waist a0 for all wavelengths
(this means that the Gaussian beam has wider accep-
tance angle at longer wavelengths, which leads to a
better overlap). In the scaled-waist case, the far-field
acceptance angle is fixed, and the optimum wavelength
is no longer at the boundary.

The values of coupling T further optimized over the
wavelength are shown in Figure 4 for various N in

the scaled- (a) and fixed-waist (b) cases. Up to 41%
coupling in the scaled-waist case (up to 35% in the
fixed-waist case) can be obtained at N¼ 16. The fully
(and independently) optimized T and T /L (including
optimization over corrugation period d ) are shown in
Figure 5(a) for both scaled and fixed beam waists. The
curves show that there is very little need to go beyond
N ¼ 4 � � � 5. It is interesting to note that for N43, the
optimum position of the beam waist z0 is in front of the
metal film, i.e. the emergent field is slightly converging.

We can further improve the coupling and coupling-
to-loss ratio by the use of aperiodic corrugations.
The optimal coupling for �¼ 560 nm in the periodic
corrugation case considered above is T ¼ 30%,
T=L ¼ 1:1 with N¼ 8 grooves, groove period
d¼ 495 nm and depth h¼ 98 nm. Optimization for
maximum coupling T at the same wavelength in the
aperiodic corrugations model yields T ¼ 44%,

Figure 2. (a) Coupling T and (b) coupling-to-loss ratio T /L
as functions of the groove period d and wavelength � for the
scaled-waist case (Gaussian 1/e intensity half-width
a0 ¼ 1400 nm� �=560 nm) with N¼ 10 grooves on each
side of the slit. Each point on the graphs was optimized over
groove depth h and position of the Gaussian beam waist z0.
Color scale is in decibels (10 log10). (The color version of this
figure is included in the online version of the journal.)

Figure 3. (a) Coupling T and (b) coupling-to-loss ratio T /L
as functions of the groove period d and wavelength � for
the fixed-waist case (Gaussian 1/e intensity half-width
a0 ¼ 1400 nm) with N¼ 10 grooves on each side of the slit.
Each point on the graphs was optimized over groove depth h
and position of the Gaussian beam waist z0. Color scale is in
decibels (10 log10). (The color version of this figure is
included in the online version of the journal.)
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T=L ¼ 1:15, with N¼ 6, groove spacing d1�6 ¼ ½218,
503, 510, 534, 162, 324�nm and depth h ¼ 101 nm,
as shown in upper Figure 5(b). If the groove depth is
also varied for optimum coupling, we get the best
results of T ¼ 64%,T=L ¼ 3:8 with N¼ 9, groove
spacing d1�9 ¼ ½238, 145, 331, 152, 387, 455, 60, 514,
508� nm and depth h1�9 ¼ ½99, 95, 100, 94, 100, 12,
100, 105, 112� nm, as shown in lower Figure 5(b),
demonstrating our 2� improvement compared with
the periodic case. Similar results are obtained at other
wavelengths as well, indicating feasibility of high
coupling (T450%) for any wavelength chosen in our
range.

Comparing geometries with and without periodic-
ity for the same number of grooves, we have also
observed that the aperiodic corrugations offer not only
extra degrees of freedom for optimization of nanocav-
ity structures, but also similar design tolerances to
fabrication errors. We have checked the design space in
the neighborhood of the optimal geometry and found
slowly degrading performance (coupling T and cou-
pling-to-loss ratio T /L) within a few nanometers from
each geometry parameter. Figure 6 shows the result of
perturbing the optimum designs of aperiodic

corrugations (with varying groove spacing and depth)
randomly within ranges of �1 nm and �4 nm. The
robustness of our designs to perturbations also indi-
cates that we have indeed achieved a significant global
maximum in the design space, without being misled by
the local maxima or numerical artifacts.

We believe that the advantage of the aperiodic
structures over the periodic ones mainly comes from
their flexibility in shaping the wavefront curvature,
whereas the periodic structures can only produce a
very simple phase profile. As illustrated by Figure 7,
the periodic corrugations produce nearly linear phase
profiles with opposite slopes for �50 and �40. As a
result, the magnitudes jE�j of the optimized periodic
structure have to decay quickly with �, in order to
avoid the formation of far-field side lobes correspond-
ing to these tilted wavefronts. The aperiodic structures,
on the other hand, are not restricted to this simple
phase dependence; for example, the phase profile for
j�j ¼ 2, 3, 4, and 5 in the aperiodic case with fixed
depth and N¼ 6 is parabolic. As a result, aperiodic
structures support a larger number of corrugations
with substantially non-zero values of jE�j, which
provides better flexibility in beam shaping and also
enables smaller overall-size structures for the same
total number of corrugations. A similar mechanism of
improved performance of aperiodic structures com-
pared to periodic ones has been recently observed for
sub-wavelength dielectric gratings [7].

Using the aperiodic-corrugation model with uni-
form groove depth, we have also looked into the
possibility of simultaneous optimization of the geom-
etry for two or more wavelengths. This, for example,
can be useful for short-pulse operation or for
nanocavity-enhanced nonlinear interactions of several
waves. The model is then used to optimize our
nanocavity parameters of interest (total transmission,
coupling, reflection, transmission to loss ratio, cavity
field enhancement, etc.). Since the wavelengths
involved might be quite different, we use the scaled-
waist approach. In general, we expect that the structure
optimized for several wavelengths should contain
corrugations with several different periods. Under the
constraint on the total number of corrugations, this is
best approximated by an aperiodic corrugated struc-
ture. Once the rough parameters of a structure for
reasonable coupling of all wavelengths have been
found, the fine optimization becomes the trade-off
between the number of supported wavelengths and the
sacrifice in coupling efficiency.

We started by finding the geometry with N¼ 6 for
simultaneous reasonably high coupling at two wave-
lengths: T¼ 20% at both �1¼ 650 nm and �2¼ 775 nm.
Weobserved that the results canbe improved in the cases
where one wavelength is a multiple of the other. For
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a0 ¼ 1400 nm. (The color version of this figure is included
in the online version of the journal.)

1958 M. Annamalai and M. Vasilyev

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
a
s
i
l
y
e
v
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
6
:
5
4
 
1
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



example, we could obtain T¼ 30% for N¼ 9 at both

�1¼ 250 nm and �2¼ 1000 nm. Although these prelim-

inary results do not reach the highest coupling values of

the single-wavelength case, they have so far been only

optimized over a small parameter sub-space and are

expected to improve after more extensive optimization.
We have also obtained the designs of the aperiodic

nanocavity [8] optimized for three-wavelengths needed

for efficient 
ð2Þ nonlinear optical interactions, such as

optical parametric amplification, sum-frequency gen-

eration, etc. For these applications, different wave-

lengths may need to be optimized for different
parameters. For example, in the case of sum-frequency

generation for up-conversion of mid-infrared beams,

one may want to build a single-, double-, or triple-

resonant cavity for the signal, idler, and pump beams,

with prime requirements of high coupling efficiency T

for one wave (e.g. the signal at �s ¼ 4100 nm), high
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total transmission Ttotal for another (e.g. for idler at
�i ¼ 955 nm), and high cavity field enhancement for
the third (e.g. high reflectance ð1� TtotalÞ for the pump
at �p ¼ 775 nm). An aperiodic model can satisfy such
complicated requirements. In our preliminary work,
we have found geometry with N¼ 7 that yields
T¼ 38% for the signal, Ttotal¼ 39% for the idler,
and Ttotal¼ 0.63% (i.e. R ¼ 99:4%) for the pump in
this scenario.

5. Conclusion

To summarize, we have performed full-scale optimiza-
tion of the coupling from a sub-wavelength metal slit
surrounded by periodic or aperiodic corrugations into
a fundamental Gaussian mode. We have optimized the
values of the parameters of the metal nanostructure,
such as the number of corrugations, their depth and
spacing, and location of the Gaussian beam waist, to
find maximum coupling T and coupling-to-loss ratio
T /L for a given wavelength. With periodic corruga-
tions, we have achieved maximum T ¼ 35% and
T=L ¼ 1:7 for a Gaussian beam with waist size
a0¼ 1400 nm independent of the wavelength, as well
as T ¼ 41% and T=L ¼ 1:14 for that with beam waist
size linearly proportional to the wavelength. Aperiodic
corrugations improve this performance by approxi-
mately 2�, provide tolerance to fabrication errors, and
enable multi-wavelength optimization. A version of
our solver was recently used to predict and optimize
the emission patterns from a fabricated nanocavity (see
figure 1(b) in [9]).
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Figure 7. Magnitudes (a, c) and phases (b, d ) of electric fields E� at various corrugations (distance zero corresponds to the central
slit) for the cases of N¼ 6 (a, b) and N¼ 9 (c, d ) corrugations on each side of the slit. (The color version of this figure is included
in the online version of the journal.)
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