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Estimation of the spatial bandwidth of an optical parametric amplifier with plane-wave pump
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We analyze the spatial-frequency dependence of the gain of phase-insensitive and phase-sensitive optical
parametric amplifiers with plane-wave pumping. We discuss the dependence of their spatial bandwidths on pump
power and crystal length, L, and observe that the well-known (ks/L)

1/2 approximation of spatial bandwidth is not
very accurate (here ks is the signal beam’s wavevector magnitude). We derive an alternative approximation that is
highly accurate at large gains and moderately accurate at low gains. The differences between the phase-insensitive
and phase-sensitive amplifier bandwidths are shown to be insignificant for gains above several dB. Maximum
phase-sensitive gain and bandwidth are realized by imposing an optimum phase profile onto the input signal’s
spatial spectrum, which has nearly parabolic shape with added series of �/2 phase discontinuities at spatial
frequencies outside the main bandwidth of the amplifier. We show that, apart from the discontinuities, such a
profile can be closely approximated by placing the image plane into the middle of the nonlinear crystal
(converging input beam). The phase discontinuities contribute an additional narrow component to the point-
spread function of the phase-sensitive amplifier.
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Spatially broadband optical parametric amplifiers

(OPAs) have gained considerable attention recently in

the context of amplification and time gating of images

[1], noiseless amplification of images [2,3], and

improvement of sensitivity and resolution of coherent

laser radars (LADARs) [4], with recent research

activity nicely summarized in [1,5]. In the practical

design of such amplifiers, some simple analytical

estimates are required for the OPA spatial bandwidth

and, particularly, its scaling (if any) with nonlinear

crystal length and pump power. A well-known estimate

for spatial bandwidth is (ks/L)
1/2, which was derived

in [6] and is commonly used in qualitative discussions

[1–4]. However, it is not clear how quantitatively

accurate this estimate is and whether it is really

useful in predicting the noticeable image quality

degradation or spread of spatial noise correlations

in OPAs.
In this paper, we compute the 3 dB spatial

bandwidths of phase-insensitive and phase-sensitive

OPAs with plane-wave pump, compare them with the

above analytical estimate, and derive a more accurate

approximation. We also investigate the impact of sub-

optimal signal phase on the spatial bandwidth and

point-spread function of the phase-sensitive OPAs.

Let us start by writing equations relating the input

and output electric fields in an OPA of length L. In

paraxial approximation the output of the OPA with

plane-wave pump is given by

~Esðq,LÞ ¼ �ðqÞ ~Esðq, 0Þ þ �ðqÞ ~E �i ð�q, 0Þ, ð1Þ

where

�ðqÞ ¼ cosh �L�
iDkeff
2�

sinh �L

� �

� exp i
Dkeff
2

L

� �
exp �i

q2

2ks
L

� �
,

�ðqÞ ¼ i
�s
�
sinh �L� exp i

Dkeff
2

L

� �
exp �i

q2

2ks
L

� �
,

ð2Þ

the effective wavevector mismatch is

Dkeff ¼ kp � ks � ki þ
q2

2

1

ks
þ

1

ki

� �
,

¼ Dkþ
q2

2

1

ks
þ

1

ki

� �
, ð3Þ
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and the parametric gain coefficient is

� ¼ �2 � Dk2eff=4
� �1=2

, ð4Þ

with

�2 ¼ �s�i ¼
!s!id

2
effIp

2"0nsninpc3
,

�s ¼
!sdeff
nsc
jEpj,

ð5Þ

and initial phase of the pump field Ep is assumed to be

zero [6]. We use subscripts ‘s’, ‘i’, and ‘p’ for the signal,

idler, and pump waves, respectively. Optical frequency

is denoted by !, refractive index by n, effective

nonlinear coefficient by deff, intensity by I, and spatial

frequency (rad mm�1) by q. We utilize tildes on top of

electric field symbols to show signals in the spatial-

frequency domain. For the degenerate case the product

of the exponentials in Equations (2), containing the

effective mismatch and diffraction phase terms,

becomes simply exp(iDkL/2). This is also approxi-

mately true for the non-degenerate case (if ks� ki,

which we will assume through the rest of this paper).

The optimum signal phase for maximum phase-

sensitive gain is given by

�opts ¼
p
4
þ
1

2
tan�1

Dkeff
2�

tanh �L

� �
þ
1

2
arg

�s
�
sinh �L

� �
:

ð6Þ

The phase-insensitive-amplifier (PIA) gain is given by

GPIA ¼ j�ðqÞj
2 ¼ 1þ j�ðqÞj2 ¼ 1þ

sinh2ð�Lð1� r2Þ1=2Þ

1� r2

ð7Þ

¼ 1þ

sinh2 �L 1� p�s f 2=ns�
� �2h i1=2� �

1� p�s f 2=ns�ð Þ
2

ðfor Dk ¼ 0Þ,

ð7aÞ

where we have introduced spatial frequency in mm�1

f¼ q/(2�) and phase mismatch factor

r ¼
Dkeff
2�
¼

Dk
2�
þ

q2

2ks�
¼

Dk
2�
þ
p�sf 2

ns�
: ð8Þ

The PIA gain is plotted in Figure 1 for the parameters

of our experimental paper [3] (a) and for the

parameters of interest in our current experiments (b),

assuming Dk¼ 0. Figure 1 also shows the optimum

signal phase (6) (normalized by �) versus spatial

frequency. For r� 1, the sinh function in Equation

(7) becomes the i sin function, i.e.

GPIA ¼ j�ðqÞj
2 ¼ 1þ j�ðqÞj2

¼ 1þ �L� sinc �Lðr2 � 1Þ1=2
� �� 	2

, ð9Þ

and GPIA¼ 1þ (�L)2 for r¼ 1. For Dk¼ 0, the first

zero of the sinc function [which is also the first zero of

�(q)] takes place at

f0 ¼
k2s
4p2

�2

p2
þ

1

L2

� �� �1=4
, ð10Þ

which can be approximated as

f0 �
ks
2pL

� �1=2

for �L� 1, ð11Þ

f0 �
1

p
ks�

2

� �1=2

for �L� 1: ð12Þ

0 5 10 15 20 25 30
0

1

2

3

4

5

6
(a) (b)L=5.21 mm, κL=0.88, λs=1064 nm

Spatial frequency f (lines/mm)

PSA gain, optimum phase
PSA gain, focus at L/2 
PSA gain, phase = π/4 
PIA gain
Optimum phase/π 

First zero 

0 2 4 6 8 10
0

2

4

6

8

10
L=25 mm, κL=1.15, λs=1550 nm

Spatial frequency f (lines/mm)

PSA gain, optimum phase
PSA gain, focus at L/2
PSA gain, phase = π/4 
PIA gain
Optimum phase/π 

First zero 

Figure 1. OPA gains (linear scale) versus spatial frequency f¼ q/(2�) for parameters of our paper [3] (a) and parameters of
current experiments (b), assuming Dk¼ 0. Optimum signal phase �opts maximizing the PSA gain is also shown. Arrow indicates
the location of the first zero of the �(2�f ) function. (The color version of this figure is included in the online version of the
journal.)
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Equation (11) represents the well-known q 	 (ks/L)
1/2

estimate for the spatial bandwidth with L�1/2 scaling.

The estimates given by Equations (10)–(12) are plotted

in Figures 2 and 3 and compared to the actual 3 dB
bandwidth of PIA gain (7).

An alternative way to estimate the 3 dB bandwidth

for large pump powers (i.e. large �) is to note that sinh

becomes an exponent at high gains, i.e.

GPIA �
exp½2�Lð1� r2Þ1=2


4ð1� r2Þ
�

1

4
expð2�LÞ expð��Lr2Þ,

ð13Þ

and, for Dk¼ 0, at 3 dB bandwidth fc we have

expð��Lr2Þ ¼ 1
2, ð14Þ

or

fc ¼
1

p
k2s� ln 2

4L

� �1=4

: ð15Þ

Estimate (15), also plotted in Figures 2 and 3, is very

accurate at high gains. One can also see that even at low

gains it provides a closer andmore conservative value to

the actual bandwidth than any of Equations (10)–(12).
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Figure 2. Spatial bandwidth fc¼ qc/(2�) of a 25mm long KTP-based OPA at 1550 nm signal wavelength, as a function of the
PIA gain at zero spatial frequency. (b) Shows extended gain range for better view of the asymptotics. Labels ‘PSA opt.’, ‘PIA’,
and ‘PSA �/4’ correspond to �3 dB bandwidths of PSA with optimum signal phase, PIA, and PSA with �s¼�/4 signal phase,
respectively. Thick line at the top corresponds to the location of the first zero of �(2� f ). Thin and dashed lines are its asymptotes
for low and high pump powers. The traditional estimate of spatial bandwidth corresponds to the low-power asymptote [ks/
(2�L)]1/2 (horizontal thin and dashed line). Dk¼ 0 is assumed. (The color version of this figure is included in the online version of
the journal.)
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Figure 3. Comparison of spatial bandwidths fc¼ qc/(2�) of a 5.21mm long KTP-based OPA at 1550 nm (a) and 1064 nm
(b) signal wavelengths, for Dk¼ 0. Line coding and other notations are the same as those in Figure 2. (The color version of this
figure is included in the online version of the journal.)
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The spatial bandwidth dependence on L is shown in
Figure 4. Let us note that, for optimum signal phase, the
phase-sensitive gain at large pump powers is also given
by Equation (13), but without the factor of 1/4 in it. This
indicates the applicability of Equation (15) to the phase-
sensitive case as well.

Let us address the issue of the spatial bandwidth of
the phase-sensitive amplifier (PSA) in greater detail. We
note that, apart from the PIA-like spatial-frequency
dependence of the gain originating from the magnitude
of �(q), another contributor to the gain is the signal
phase �s that must be appropriate for the amplification.
The maximum PSA gain

G opt
PSA ¼ ½j�ðqÞj þ j�ðqÞj


2
¼ G1=2

PIA þ ðGPIA � 1Þ1=2


 

� �2

ð16Þ

is achieved for optimum signal phase �opts from
Equation (6) that is q-dependent and, therefore, may
not be easily realizable. We can re-write Equation (6) as

2�opts � p=2 ¼ tan�1
r

ð1� r2Þ1=2
tanh �Lð1� r2Þ1=2

� 	� �

þ arg
1

ð1� r2Þ1=2
sinh �Lð1� r2Þ1=2

� 	� �
:

ð17Þ

In Equations (6) and (17) we assume that the function
tan�1 produces no phase jumps when its argument
jumps from þ1 to �1, which in Equation (17)
happens at points with r2¼ 1þ [�(mþ 1/2)/(�L)]2 and
m¼ 0, 1, 2, . . . . On the other hand, the second term
in Equation (17) makes � phase jumps at

r2¼ 1þ [�(mþ 1)/(�L)]2 for m¼ 0, 1, 2, . . . (sign of
sinc function, i.e. polarity of �, changes). The resulting
piecewise-continuous optimum signal phase �opts for
Dk¼ 0 is plotted in Figure 1 by a blue line. If, instead
of the optimum phase, we choose a smooth function of
spatial frequency without the phase jumps (i.e. without
the second term in Equation (17)), which we will call an
‘almost optimum phase’, at the even-m turning points,
the amplification in Figure 1 would be changing into
an equal amount of de-amplification, yielding a
smooth (but not optimum) PSA gain function. Even
this ‘almost optimum’ phase is still q-dependent and
not easily realizable.

Let us now consider two practically achievable
cases. Assuming that Dk¼ 0 and that the input signal
has a flat phase front with �s¼�/4 (i.e. optimum for
zero spatial frequency), we obtain the PSA gain

Gp=4
PSA ¼ �ðqÞ � i�ðqÞ



 

2
¼ G1=2

PIA þ exp ið2�opts � p=2Þ
� 	

ðGPIA � 1Þ1=2



 


2:

ð18Þ

Note that, since for high spatial frequencies GPIA� 1 is
negative, the square root of it becomes a bipolar sinc
function. Non-optimum PSA gain of Equation (18) is
also plotted in Figure 1, which shows that, for the
range of gains of interest, the non-optimum PSA
spatial bandwidth is slightly narrower than the opti-
mum one. The 3 dB PSA bandwidths of (GPSA� 1) are
plotted in Figures 2 to 4, which confirm this conclu-
sion, but also show that the difference between
optimum PSA, non-optimum PSA, and PIA band-
widths quickly disappears for gains 	10 dB and over.
Also note that, for small values of �L, optimum signal
phase �opts from Equations (6) and (17) is

� opts �
p
4
þ
�Lr

2
¼

p
4
þ
DkL
4
þ

q2

4ks
L, ð19Þ

i.e. it is obtained by placing the focus of the image at
z0¼L/2 (middle of the crystal). PSA gain for such a
converging beam is also plotted in Figure 1, and one can
see that the difference between this and the optimum
PSA gain is negligible, except for the areas of phase
jumps, where this gain closely resembles that with
‘almost optimum phase’. The difference between the
actual optimum signal phase (6) and the approximate
phase (19) is plotted in Figure 5 for several values of the
PSA gain at zero spatial frequency and Dk¼ 0.

Finally, let us consider the consequences of the
difference between the PSA gain with optimum phase
and that with the ‘almost optimum phase’ (without
phase jumps). The latter is described by a smooth
function of spatial frequency, as opposed to the
former. Since the amplitude gain represents the optical
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pump power (�¼ 0.046mm�1, which corresponds to 10 dB
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transfer function of the PSA, its inverse Fourier
transform represents the point-spread function (PSF).
Thus, the PSFs for the optimum and almost optimum
cases are given by

PSFoptimum
ðqÞ ¼

ð
expðiqqÞ½j�ðqÞj þ j�ðqÞj


dq

ð2pÞ2
,

PSFalmostoptimum
ðqÞ ¼

ð
expðiqqÞ½j�ðqÞj � i�ðqÞ


dq

ð2pÞ2
:

ð20Þ

(Here we have assumed that, since the input signal
phase in Equation (20) contains at least the first term
from the right-hand side of Equation (17), then a
similar phase profile will be applied at the amplifier’s
output to eliminate the common phase of � and �, i.e.
to bring the image into a focus.) Since both PSFs in
Equation (20) contain the original 	(q)-function of the
unamplified point source plus the contribution of the
PSA gain, for visualization purposes it is convenient to
modify the PSFs by subtracting this 	-function. Such
modified PSFs are shown in Figure 6. It is clear from
this figure that the optimum gain function yields a
narrower PSF because its rectification of the sinc
function in the spatial-frequency domain produces a
component of the PSF with a singularity at the origin.
The smooth function of a PSA gain with ‘almost
optimum phase’ yields a smooth PSF, and a similar
PSF is expected for the PSA with image in the center of
the crystal (phase given by Equation (19)).

To summarize, first of all we see that Equation (15)
provides a better spatial bandwidth estimate than

q	 (ks/L)
1/2 of Equation (11). Second, the differences

between the PIA and PSA bandwidths (even with a flat
input PSA phase) are not significant. If maximum PSA
bandwidth is ultimately required, then the approxi-
mately parabolic shape of the optimum phase versus
spatial frequency in Figure 1 suggests that simply
placing the image focus at the location z0¼L/2 (input
beam converging into the middle of the crystal) solves
the problem. Finally, the optimum PSA phase �opts with
�/2 phase jumps of Equations (6) and (17) results in a
somewhat narrower point-spread function compared
to the other cases.
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