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Soliton squeezing in a highly transmissive nonlinear optical
loop mirror
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A perturbation approach is used to study the quantum noise of optical solitons in an asymmetric f iber
Sagnac interferometer (a highly transmissive nonlinear optical loop mirror). Analytical expressions for the
three second-order quadrature correlators are derived and used to predict the amount of detectable amplitude
squeezing along with the optimum power-splitting ratio of the Sagnac interferometer. We find that it is the
number-phase correlation owing to the Kerr nonlinearity that is primarily responsible for the observable noise
reduction. The group-velocity dispersion affecting the field in the nonsoliton arm of the fiber interferometer
is shown to limit the minimum achievable Fano factor.  1999 Optical Society of America
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Recently, generation of sub-Poissonian light in an
asymmetric fiber Sagnac interferometer was pre-
dicted1 by use of a numerical technique that relies
on a positive-P representation.2 Two groups have
validated this prediction,3,4 demonstrating 3.9 and
5.7 dB of amplitude squeezing, respectively. In this
Letter we clarify the physical mechanism that is
responsible for this noise reduction by deriving an
analytical solution that is based on a perturbation
approach.5,6 We find that the observable amplitude
squeezing in the asymmetric Sagnac loop is mainly
determined by the strong number-phase correlation,
which grows with propagation distance, similar to the
cw case studied by Kitagawa and Yamamoto.7 This
squeezing mechanism differs from that of soliton
spectral filtering, wherein the noise reduction re-
sults mostly from the correlation between the photon
number and the bandwidth, which does not grow
with distance.6 We calculate the amount of available
squeezing as well as the optimum power-splitting ratio
of the Sagnac interferometer and explain the role of
the group-velocity dispersion. Our model takes into
account the complete contribution of the continuum to
the detected quantum noise.6

We analyze the following experimental configura-
tion. A short optical pulse is launched into a fiber
Sagnac interferometer. The action of the beam split-
ter results in two independent modes, an N ­ 1 soli-
ton âsol propagating in one direction around the fiber
loop and a weaker sN2 ,, 1d dispersive pulse âgvd
propagating in the other direction. After propaga-
tion around the fiber loop, the two pulses interfere at
the same beam splitter, so most of the soliton power
appears in the transmitting arm of the interferome-
ter, mixed with a small fraction of the power of
the dispersive pulse. The transmitted pulse is sub-
sequently directed onto a photon-counting detector.
For a beam splitter with intensity transmission co-
eff icient T the two counterpropagating waves inside
the Sagnac loop are âsolsjd ­ fa0 1 Dâsolsjdgexpsijy2d
and âgvdsjd ­ ifs1 2 T dyT g1/2a0exps2icd 1 iDâgvdsjd.
Here a0svd ­ p sechspvy2d is the fundamental soli-
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ton shape in the frequency domain, j is the normal-
ized propagation distance inside the loop in units of
dispersion length, c ; v2jy2 is the quadratic phase
shift that is due to the group-velocity dispersion, and
Dâsol and Dâgvd are quantum noises associated with
the soliton and the dispersive pulse, respectively, i.e.,
fDâisv, jd, Dây

j sv0, jdg ­ 2pdsv 2 v0ddij for i, j [
hsol, gvdj. The two noise operators represent inde-
pendent coherent states immediately after the beam
splitter sat j ­ 0d: kDâisv, 0dDâj sv0, 0dl ­ 0. In our
analysis we consider T to be large enough that the non-
linear effects in the propagation of the weaker pulse
âgvd can be neglected, i.e., Dâgvdsjd remains in a coher-
ent state for all j. The soliton âsolsjd, however, evolves
toward a nonclassical state, according to the nonlinear
Schrödinger equation.5,6

The output field in the transmitting arm of the
interferometer is given by

âout ; aout 1 Dâout ­
p

T âsolsjd 1 i
p

1 2 T âgvdsjd ,
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T Dâsolsjdexpsijy2d 2

p
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Defining the two noise operators Dâc
solsv, jd ;

fDâsolsv, jd 1 Dây
solsv, jdgy2 and Dâs

solsv, jd ;
fDâsolsv, jd 2 Dây

solsv, jdgy2, which represent am-
plitude (cosine) and phase (sine) f luctuations of the
soliton field, and using Eqs. (2) and (3), we find the
following Fano factor for ideal direct detection (unit
detection efficiency) at the transmitting output port:
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where Fc ­ cos wsvd, Fs ­ 2i sin wsvd, and wsvd ­
argfaoutsvdg 2 jy2. Our conventions throughout this
Letter are to use prime symbols to denote functions
of v0, where applicable, and to assume all integrals
to be from minus infinity to plus infinity. In Eq. (4)
G

ij
N sv, v0, jd are the normally ordered correlators,

which are evaluated at length j as

Gcc
N sv, v0, jd ; 4k: Dâc

solDâc0
sol :lj , (5)

Gss
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solDâs0
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­ 2Gcsp
N sv, v0, jd ­ Gsc

N sv0, v, jd . (7)

We can easily obtain these noise correlators by
following the perturbation approach described in
Ref. 6. For the sake of convenience we first evaluate
them in the time domain and then use the Fourier-
transform relation to convert them to the form given
in Eqs. (5)–(7). The cosine and sine noise operators in
the time domain can be constructed with the normal-
mode expansion as follows:

fDâsolst, jd 1 Dây
sols2t, jdgy2 ­

X
i­n, p, c

DX̂i , (8)

fDâsolst, jd 2 Dây
sols2t, jdgy2 ­

X
i­u, t, s

DX̂i , (9)

where the six contributing terms are given by
DX̂i[hn, p, u, tjst, jd ; V̂isjdfistd and DX̂i[hc, sjst, jd ;R

V̂isV, jdfisV, tddVy2p. The time-domain normal
modes used in the expansion of the cosine operator,
fnstd ­ f1 2 t tanhstdgsechstd, fpstd ­ 2it sechstd,
and fcstd ­ hfsV2 2 1d 2 2iV tanh stdgexps2iVtd 1

2 sech2stdcossVtdjysV2 1 1d, have real Fourier trans-
forms, whereas the modes that are pertinent to the sine
operator, fustd ­ 2i sechstd, ftstd ­ tanhstdsechstd,
and fsstd ­ ihfsV2 2 1d 2 2iV tanhstdgexps2iVtd 2

2i sech2stdsinsVtdjysV2 1 1d, have imaginary Fourier
transforms. Note that we employ the Heisenberg
picture, where all the j dependence is in the operator
coefficients V̂isjd, which are Hermitian and can be as-
sociated with either the time- or frequency-dependent
modes. Physically, fn, fu , fp, and ft represent per-
turbations to the soliton field owing to changes in
photon number, phase, momentum (frequency), and
position (time), respectively, whereas fc and fs rep-
resent amplitude and phase perturbations of the
continuum, respectively. The equations of motion
for the operator coefficients are found by substitution
of the modal expansion into the linearized nonlinear
Schrödinger equation and employment of the orthogo-
nality relations described in Refs. 5 and 6. In this
way the inverse Fourier transforms of the correlators
in Eqs. (5)–(7), in their unordered form, are shown
to be
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X
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We evaluated all the second-order moments between
the operator coefficients that are present in Eqs. (10)–
(12) for arbitrary values of j. Defining a ; s1 1

V2djy2, b ; sV2 2 V02djy2, and g ; s2 1 V2 1
V02djy2, we obtain the following nonzero moments:
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Note that all the operator coefficients of the same class
(i.e., cosine or sine) commute with each other.

We evaluated the integrals that are present in
Eqs. (10)–(12) numerically, took the Fourier trans-
forms of the resulting correlators, and used them in
Eq. (4) to obtain the Fano factor. The results are plot-
ted in Fig. 1 versus the intensity-transmission coef-
ficient T and the propagation distance z ; 2jyp in
soliton periods. As shown, large amounts of squeezing
can be obtained for propagation distances z . 3. The
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Fig. 1. Top: contour plot showing the Fano factor, includ-
ing dispersion, versus T (solid curves, F ­ 210 dB; dashed
curves, F ­ 25 dB; thick solid curves, F ­ 0 dB; dotted-
dashed curves, F ­ 5 dB; dotted curves, F ­ 10 dB; thick
gray curves, F ­ 15 dB). Middle: Fano factor minimized
by the proper choice of T with (solid curves) and without
(dashed curves) dispersion taken into account; the Fano fac-
tor limit imposed by the loss s1 2 T d in each case (dotted
curves) is also shown. Bottom: optimum T corresponding
to the minimum Fano factor in the middle figure, with (solid
curves) and without (dashed curves) dispersion. The dis-
tance is in soliton periods in all three plots.

noise-reduction regions repeat approximately every
eight soliton periods; propagation over this distance re-
sults in the soliton’s acquiring a nonlinear phase shift
Djy2 ­ 2p with respect to the weak pulse. The first
three local minima of the Fano factor are found to be
210.6 dB sz ø 5.5, T ø 0.92d, 212.7 dB sz ø 13.2, T ø
0.95d, and 213.7 dB sz ø 21.1, T ø 0.96d.

The periodicity in the Fano factor indicates that the
physical mechanism behind the noise reduction in a
Sagnac interferometer is very similar to those of the
cw field in a nonlinear Mach-Zehnder interferometer7

and of soliton quadrature squeezing.5 As the soliton
propagates in one direction around the loop, one of
the field quadratures becomes squeezed owing to self-
phase modulation. This squeezing is manifested by
the correlations of V̂n, V̂c, with V̂u, V̂s. Although the
amount of squeezing increases with j, the angle of the
squeezed quadrature with respect to the soliton mean
field approaches zero. The amplitude quardrature,
however, remains unsqueezed. By mixing a small co-
herent mean-field component with the squeezed soli-
ton field, one can rotate the output mean field aout to
select the minimum noise quadrature7,8 while introduc-
ing only a small amount of loss to the squeezed compo-
nent. The Sagnac interferometer performs the mixing
of the two fields with the relative phase shift deter-
mined by the nonlinear phase of the soliton inside the
fiber loop. This configuration provides good stability
of the interference while limiting the minimum Fano
factor by only the amount of the beam-splitter loss,
1 2 T . To illustrate this point we calculated the op-
timum noise reduction for the case in which the disper-
sion in the weaker pulse is turned off [c in Eq. (2) is set
to 0]. In Fig. 1 we compare the Fano factors with and
without dispersion in the weaker pulse with the limits
set by the corresponding beam-splitting losses, 1 2 T .
One can see that the amount of available quadrature
squeezing inside the loop is large enough to make 1 2 T
the main constraint on the observable noise reduc-
tion. For long propagation distances the fundamental
soliton a0std ­ sechstd is close to the matched local-
oscillator shape for detection of quadrature squeez-
ing.5 Therefore, since the undispersed pulse is better
matched to the squeezed mode than is the dispersed
pulse, the amount of mean field needed to rotate the
output field is smaller, resulting in lower necessary
loss, 1 2 T . As z increases, the optimum transmission
approaches unity, and the Fano factor becomes arbi-
trarily small in an increasingly narrow range of values
of T . On the other hand, when the dispersion of the
weaker pulse is taken into account, the optimum trans-
mission becomes smaller and the requirement on its
tolerance relaxes, whereas the achievable noise reduc-
tion suffers. For longer propagation distances (up to
z ­ 50), we find that the Fano factor slowly approaches
a value of F ø 216 dB. Note that in the time domain
dispersion also leads to a mean phase shift of agvd with
respect to asol, causing regions of optimum squeezing
to slide toward shorter z by approximately one soliton
period.

Although our model does not provide numerical
estimates when the pulse propagating in the strong
arm of the interferometer is not a soliton sN fi 1d,
one can make approximate predictions by shifting the
ranges of squeezing in Fig. 1 along the z direction by
the amount of the additional nonlinear phase shift.
Such predictions are found to be in agreement with
numerical1,3 and experimental3,4 results.
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