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Perturbation theory of quantum solitons: continuum evolution
and optimum squeezing by spectral filtering
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We study the quantum-noise properties of spectrally filtered solitons in optical f ibers. Perturbation theory,
including a quantum description of the continuum, is used to derive a complete analytical expression for
the second-order correlator of the amplitude quadrature. This correlator is subsequently used to optimize
the frequency response of the filter numerically in order to achieve the minimum photon-number noise. For
propagation distances up to three soliton periods, the length at which the best noise reduction occurs, a
square filter is found to be approximately optimum. For longer distances, more-complicated filter shapes are
predicted for the best noise reduction.  1999 Optical Society of America
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Recently, sub-Poissonian light was generated by
frequency filtering of solitons after their propaga-
tion through the fiber.1 Optical solitons were
launched into the fiber, and the light emerging from
the spectral filter was directed onto a photon-counting
detector, where its noise was measured. Numerical
and analytical models of these experiments were
developed, based on a positive P representation2 and
a backpropagation approach.3 One critical issue
that was not addressed in these models is that of
an optimum filter that maximizes the observable
quantum-noise reduction for a given length of fiber.
In this Letter we offer a solution to the matched-filter
problem. We derive, for the first time to our knowl-
edge, an analytical expression for the quantum-noise
correlator of the soliton amplitude quadrature as a
function of the fiber length, taking into account the
complete contribution of the continuum.4 An experi-
mental study of this correlator was recently reported.5

Propagation of the mode-amplitude operator âst, jd
inside an optical fiber is described by the quantum non-
linear Schrödinger equation (NLSE), which in dimen-
sionless coordinates is
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If the operators in this equation are replaced
by c-numbers, Eq. (1) is known to have the
classical fundamental-soliton solution ast, jd 
f

n
stdexpsijy2d ; sechstdexpsijy2d, given here in the

canonical form corresponding to the average number
of photons kN̂ l  2, where N̂ ;

R
âystdâstd dt. To

circumvent the problem of solving for the nonlinear
evolution of operator â, we use the soliton perturbation
approach developed in Ref. 6. We write the operator
in the following form:

âst, jd  f
n
stdexpsijy2d 1 Db̂st, jd

; ff
n
std 1 Dâst, jdgexpsijy2d , (2)

with Dâ subject to the usual commutation relations
everywhere inside the fiber: fDâst, jd, Dâst0, jdg 
fDâyst, jd, Dâyst0, jdg  0, fDâst, jd, Dâyst0, jdg 
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dst 2 t0d. Substituting Eq. (2) into Eq. (1) and
keeping only terms that are linear in Db̂ divides the
analysis of Eq. (1) into two separate problems: the
soliton solution of the classical NLSE and the solution
of the linearized operator equation
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where the quantum-mechanical f luctuation operator
Db̂ represents perturbation of the classical soliton field
by the quantum noise. This linearization approach is
valid if the photon-number noise is small compared
with the mean number of photons in the soliton, which
is usually the case in most experiments.

In the linearization approximation, because we re-
tain terms only up to first order in Db̂, the photon-
number noise is determined by the f luctuations in
the amplitude quadrature. We assume that the filter
H svd at the output of the fiber is linear. Because the
filtered light is direct-detected, we can disregard the
phase factor expsijy2d in Eq. (2), for both the noise and
the mean fields, as well as the phase of H svd. How-
ever, we must restrict the filter transfer function such
that 0 # jH svdj # 1 for it to represent a physically real-
izable filter. In the frequency domain, the f luctuation
operator after the filter is

Dâosv, jd  jH svdjDâsv, jd 1

q
1 2 jH svdj2 v̂svd , (4)

where v̂ is a vacuum-state operator that describes the
frequency-dependent loss of the filter. By normalizing
the photon-number variance to the average output
photon number we obtain the Fano factor:
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n
sv0d , (5)

where kN̂ol ;
R

jH svdj2f
n
svd2dvy2p is the aver-

age number of photons at the filter output and
GN sv, v0, jd is the normally ordered part of the
second-order amplitude-quadrature correlator:
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Gsv, v0, jd  2pdsv 2 v0d 1 GN sv, v0, jd

; kfDâsv, jd 1 Dâysv, jdg fDâsv0, jd 1 Dâysv0, jdgl .

Note that all integrals in Eq. (5) and throughout this
Letter are assumed to have limits from 2` to `.
Computationally, it is easier to work with a two-
dimensional Fourier transform of Gsv, v0, jd:

Gst, t0, jd  dst 1 t0d 1 GN st, t0, jd

 kfDâst, jd 1 Dâys2t, jdg fDâst0, jd 1 Dâys2t0, jdgl .

The solution of Eq. (3) can be written as a normal
mode expansion6:

Dâst, jd 
Z dV

2p
fV̂csV, jdfcsV, td 1 V̂ssV, jdfssV, tdg

1
X

in, p, t, u

V̂isjdfistd , (6)

wherein the four discrete modes fn, fp, ft, and fu

represent perturbations to the soliton shape that
are due to changes in photon number, momentum
(frequency), position (time), and phase, respectively,
and fc and fs are the symmetric and antisymmet-
ric parts, respectively, of the modes that represent
perturbations of the continuum (dispersive radia-
tion) in the fiber. In our convention, the symmetric
modes satisfy f std  fps2td and are given by fn 
f1 2 t tanhstdgsechstd, fp  2it sechstd, and fc 
hfsV2 2 1d 2 2iV tanhstdgexps2iVtd 1 2 sech 2std 3

cossVtdjysV2 1 1d, which are real in the frequency
domain. The antisymmetric [i.e., f std  2fps2td]
modes, ft  tanhstdsechstd, fu  2i sechstd, and fs 
ihfsV2 2 1d 2 2iV tanhstdgexps2iVtd 2 2i sech2std 3
sinsVtdjysV2 1 1d, are imaginary in v.

Note that the j dependence in Eq. (6) is associated
with the operator coefficients V̂i, V̂c, and V̂s (Hei-
senberg picture), which are Hermitian. The white
coherent-state quantum noise at the input of the fiber
sj  0d perturbs all the modes of the linearized NLSE,
as shown by the expansion in Eq. (6). The operator
coefficients in Eq. (6) then propagate through to the
end of the fiber, where the noise is reconstructed, once
again, by superposition of all the normal modes.

By substituting the expansion in Eq. (6) into Eq. (3)
one can show that the photon number and momentum
do not change as the soliton propagates along the fiber,
i.e., V̂nsjd  V̂ns0d and V̂psjd  V̂ps0d, whereas the time
and phase evolve according to V̂tsjd  V̂ts0d 2 jV̂ps0d
and V̂usjd  V̂us0d 2 jV̂ns0d. Similarly, for the two
continuum operators V̂csV, jd  V̂csV, 0dcosfs1 1

V2djy2g 1 V̂ssV, 0dsinfs1 1 V2djy2g and V̂ssV, jd 
V̂ssV, 0dcosfs1 1 V2djy2g 2 V̂csV, 0dsinfs1 1 V2djy2g.
Operators V̂c and V̂s are essentially the quadra-
ture operators associated with a continuum mode
V and subject to the usual commutation relations:
fV̂csV, jd, V̂ssV0, jdg  ipdsV 2 V0d and fV̂csV, jd,
V̂csV0, jdg  fV̂ssV, jd, V̂ssV0, jdg  0. Note that our
continuum mode functions are consistent with the
definition in Ref. 6, although we have adopted a form
that is convenient for Heisenberg representation.
To project out the expansion coefficients in Eq. (6)
one needs to construct an orthogonality relation by
pairing the growing solutions with the decaying
(adjoint) ones such that the cross energy is con-
served.6 The adjoint solutions, shown here with
underbars, are solutions of the adjoint linearized
NLSE, which differs from Eq. (3) by the sign of the
Dby term, and are related to the solutions of Eq. (3).
Specif ically: f
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in Eq. (2)]. Defining the scalar product as
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we obtain the orthogonality conditions: k fi ?

f
j
pli, j[hn, p, t, u, c, sj  Dij , where Dij  dij in all

cases except when i  j [ hc, sj, in which case
Dii  2pdsV 2 V0d.

Only the symmetric (real in the frequency domain)
modes contribute to the amplitude-quadrature cor-
relator. Accordingly, we define two time-domain
quadrature-like operators, Dâcst, jd  fDâst, jd 1

Dâys2t, jdgy2 and Dâsst, jd  fDâst, jd 2 Dâys2t,
jdgy2, where only the symmetric quadrature Dâcst, jd
is needed for our calculation. The quantum-
f luctuation operators are projected out by use of
Eq. (7), i.e., V̂c, n, p ; kDâc ? f

c, n, p
pl and V̂s, u, t ;

kDâs ? f
s, u, t

pl. This projection allows us to obtain an
analytical expression for the second-order quadrature
correlator in the time domain:
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Fig. 1. Top, gray-scale visualization of the optimum filter
response jH svd j2opt, where white and black correspond to
0 and 1, respectively. Bottom, Fano factor obtained for a
square filter with a  0.18 (dashed curve) and the optimum
filter (solid curve); total loss a for the square filter (dotted–
dashed line) and the optimum filter (dotted curve). In
both plots distance is in soliton periods.

Fig. 2. Top, normally ordered quadrature-noise correlator
GN sv, v0, jd. Bottom, frequency response jH svd j2opt of the
optimum filter (interpolated circles), amplitude-quadrature
variance GN sv, v, jd (dotted curve), and zero-frequency-to-
sideband correlation function GN s0, v, jd (dashed curve).
All functions are shown for z ; 2jyp  10.73.

and kV̂n
2l  1y2, kV̂p

2l  1y6.
We have numerically evaluated the integrals in the

correlator in Eq. (8) and taken its Fourier transform
to get to a form that is useful for the optimum
frequency-filtering problem. Note that, in the absence
of filtering, only the kV̂n

2l term contributes to the
Fano factor, making it equal to 1 because, owing to
orthogonality, all the other terms integrate to zero in
Eq. (5). This fact makes the role of the filter clear, as
it permits mixing in of the negatively correlated terms
in Eq. (8). The noise reduction takes place mainly
because of the kV̂nV̂cl term, which describes the fact
that an increasing photon number causes an increased
soliton bandwidth, thereby resulting in a higher loss
introduced by the spectral filter. We observe here
that the physical symmetry of the problem suggests an
optimum filter function that is even in the frequency
domain. Hence the terms that contain fp do not
contribute to the optimally filtered noise.

With the form of the noise correlator in hand,
we are able to find the optimum filter frequency
response jH svdj2opt by minimizing the Fano factor.
Because of the constraint that 0 # jH svdj2 # 1, analyti-
cal optimization by variational methods is impractical.
Instead, we utilized a numerical quasi-Newton con-
strained optimization algorithm. The resultant filter
shape along with the corresponding Fano factor and
the filter loss a ; f1 2 kN̂olykN̂ lg is shown in Fig. 1
as a function of the propagation distance z ; 2jyp
in soliton periods. We have also plotted the results
for a square filter with its transmission bandwidth
adjusted sa ø 0.18d for maximum noise reduction at
z  3. For this filter our results are in an excel-
lent agreement with those in Ref. 3. As can be seen
from Fig. 1, the best noise reduction of ø6.5 dB is
achieved for z ø 3, where the optimum filter is close
to a square shape. The effect of optimization becomes
evident for z . 3, where the optimum filter acquires
more-complicated shapes to take advantage of the fast
oscillations that develop in the continuum part of the
correlator GN sv, v 0, jd, as illustrated in Fig. 2.

In conclusion, it is mainly the correlations between
the continuum and the soliton photon number that lead
to the quantum-noise reduction after spectral filtering.
We found the optimum filter that establishes a theoret-
ical limit on the observable noise reduction. For the
fiber lengths up to three soliton periods, at which the
best noise reduction occurs, the square filter is shown
to be a good approximation to the optimum filter. For
longer lengths, however, the optimum filter shape de-
velops a number of sidebands, resulting in a clear im-
provement over the square filter.
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