Perturbation theory of quantum solitons:
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We study the quantum-noise properties of spectrally filtered solitons in optical fibers.

Perturbation theory,

including a quantum description of the continuum, is used to derive a complete analytical expression for

the second-order correlator of the amplitude quadrature.

This correlator is subsequently used to optimize

the frequency response of the filter numerically in order to achieve the minimum photon-number noise. For
propagation distances up to three soliton periods, the length at which the best noise reduction occurs, a
square filter is found to be approximately optimum. For longer distances, more-complicated filter shapes are

predicted for the best noise reduction.
OCIS codes: 270.6570, 060.5530.

Recently, sub-Poissonian light was generated by
frequency filtering of solitons after their propaga-
tion through the fiber.! Optical solitons were
launched into the fiber, and the light emerging from
the spectral filter was directed onto a photon-counting
detector, where its noise was measured. Numerical
and analytical models of these experiments were
developed, based on a positive P representation® and
a backpropagation approach.® One critical issue
that was not addressed in these models is that of
an optimum filter that maximizes the observable
quantum-noise reduction for a given length of fiber.
In this Letter we offer a solution to the matched-filter
problem. We derive, for the first time to our knowl-
edge, an analytical expression for the quantum-noise
correlator of the soliton amplitude quadrature as a
function of the fiber length, taking into account the
complete contribution of the continuum.* An experi-
mental study of this correlator was recently reported.’

Propagation of the mode-amplitude operator a(7, &)
inside an optical fiber is described by the quantum non-
linear Schrodinger equation (NLSE), which in dimen-
sionless coordinates is
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If the operators in this equation are replaced
by c-numbers, Eq. (1) is known to have the
classical fundamental-soliton solution a(7,&) =
fn(T)exp(if/Z) = sech(r)exp(i£/2), given here in the
canonical form corresponding to the average number
of photons (N) = 2, where N = [at(r)a(r)dr. To
circumvent the problem of solving for the nonlinear
evolution of operator @, we use the soliton perturbation
approach developed in Ref. 6. We write the operator
in the following form:

alr, &) = £, ()expl(i£/2) + Ab(r, )

= [f,(7) + Adl(r, &)lexp(ié/2), )

with Aa subject to the usual commutation relations
everywhere inside the fiber: [Aa(r, &), Aa(7/, &)] =
[Aal(r, &), AaM(/, §)] = 0, [Aa(r, &), AaM (7, §)] =
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d(r — 7'). Substituting Eq.(2) into Eq. (1) and
keeping only terms that are linear in Ab divides the
analysis of Eq. (1) into two separate problems: the
soliton solution of the classical NLSE and the solution
of the linearized operator equation
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where the quantum-mechanical fluctuation operator
Ab represents perturbation of the classical soliton field
by the quantum noise. This linearization approach is
valid if the photon-number noise is small compared
with the mean number of photons in the soliton, which
is usually the case in most experiments.

In the linearization approximation, because we re-
tain terms only up to first order in Ab, the photon-
number noise is determined by the fluctuations in
the amplitude quadrature. We assume that the filter
H(w) at the output of the fiber is linear. Because the
filtered light is direct-detected, we can disregard the
phase factor exp(i£/2) in Eq. (2), for both the noise and
the mean fields, as well as the phase of H(w). How-
ever, we must restrict the filter transfer function such
that 0 = |H(w)| = 1 for it to represent a physically real-
izable filter. In the frequency domain, the fluctuation
operator after the filter is

Ady(w, §) = |H(w)lAd(w, £) + 41 = [H(0)?0(w), (4)

where 0 is a vacuum-state operator that describes the
frequency-dependent loss of the filter. By normalizing
the photon-number variance to the average output
photon number we obtain the Fano factor:
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where (N,) = fIH(w)szn(w)zdw/%'r is the aver-
age number of photons at the filter output and
Gy(w, o', §) is the normally ordered part of the
second-order amplitude-quadrature correlator:
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Gw,0, &= 2786w — ')+ Gy(w,w, &)
= ([Ad(w,§) + AdT (0, O)][Ad(0', ) + AdT (0, 6))).

Note that all integrals in Eq. (5) and throughout this
Letter are assumed to have limits from —o to .
Computationally, it is easier to work with a two-
dimensional Fourier transform of G(w, o', £):

G(r, 7', €)= 8(r+ 7))+ Gn(1, 7', €)

= ([Aa(r, &) + AaT (-7, &)][Aa(7, &) + Aat (=7, €))).

The solution of Eq. (3) can be written as a normal
mode expansion®:

satr, &= [ SEVQ, 80,7 + V0, 0)f,(0,7)
+ Y Vi@filo), (6)
i=n,p, 7,0

wherein the four discrete modes f,, fp, f-, and fy
represent perturbations to the soliton shape that
are due to changes in photon number, momentum
(frequency), position (time), and phase, respectively,
and f, and f; are the symmetric and antisymmet-
ric parts, respectively, of the modes that represent
perturbations of the continuum (dispersive radia-
tion) in the fiber. In our convention, the symmetric
modes satisfy f(r) = f*(—7) and are given by f, =
[1 — 7tanh(r)]sech(r), fp = —i7 sech(r), and f, =
{{(Q2%2 = 1) — 2iQ tanh(7)]exp(—iQ7) + 2sech?(r) X
cos(Q7)}/(Q2 + 1), which are real in the frequency
domain. The antisymmetric [i.e., f(r) = —f"(—7)]
modes, f, = tanh(r)sech(r), fo = —i sech(7), and f; =
i{[(Q2 — 1) — 2iQ tanh(7)]exp(—iQ7) — 2i sech?(r) X
sin(Q7)}/(Q2 + 1), are imaginary in .

Note that the ¢ dependence in Eq. (6) is associated
with the operator coefficients Vi, V., and V, (Hei-
senberg picture), which are Hermitian. The white
coherent-state quantum noise at the input of the fiber
(¢ = 0) perturbs all the modes of the linearized NLSE,
as shown by the expansion in Eq. (6). The operator
coefficients in Eq. (6) then propagate through to the
end of the fiber, where the noise is reconstructed, once
again, by superposition of all the normal modes.

By substituting the expansion in Eq. (6) into Eq. (3)
one can show that the photon number and momentum
do not change as the soliton propagates along the fiber,
ie., Vo,(£) = V,(0) and V,(£) = V,(0), whereas the time
and phase evolve according to V.(¢) = V.(0) — pr(O)
and Vy(€) = Vp(0) — £V,(0). SimilaArly, for the two
continuum operators V.(Q, §) = V.(Q, O)cos[(1 +
Q2)¢/2] + V,(Q, 0)sm[(1 + 02)¢/2] and V,(Q, &) =
V,(Q, 0)cos[(1 + 0%&/2] - V.(Q, 0)sin[(1 + 92)5/2]
Operators V. and V, are essentially the quadra-
ture operators associated with a continuum mode
() and subject to the usual commutation relations:
[Ve(@, &), Vi(Q, §)] = ims(Q — Q) and [V.(Q, &),
V.(Q, €)] = [Vs(Q, &), Vs(Q', £)] = 0. Note that our
continuum mode functions are consistent with the
definition in Ref. 6, although we have adopted a form
that is convenient for Heisenberg representation.

To project out the expansion coefficients in Eq. (6)
one needs to construct an orthogonality relation by
pairing the growing solutions with the decaying
(adjoint) ones such that the cross energy is con-
served.® The adjoint solutions, shown here with
underbars, are solutions of the adjoint linearized
NLSE, which differs from Eq. (3) by the sign of the
Abt term, and are related to the solutions of Eq. (3).

Specifically: £, = ~ifu, f, = if p f, = ifer £, = ifs,
f = —if,, }i = —lfs [note that f is the same as that
in Eq (2)]. Defining the scalar product as
(fiof )= Re [ fitnf *rar
d
= Reffi(w) Vo @
m
we obtain the orthogonality conditions: (f;

fj*>i,je{n,p,r,0,c,s} = Aij, where Aij = 5ij in all
cases except when i = j € {c, s}, in which case
Aii = 275(9 - Ql)

Only the symmetric (real in the frequency domain)
modes contribute to the amplitude-quadrature cor-
relator. Accordingly, we define two time-domain
quadrature-like operators, Ad.(r, &) = [Aa(r, &) +
Aat(—7, £))/2 and Ada(r, §) = [Aa(r, §) — Aal(-r,
£)]/2, where only the symmetric quadrature Ada.(7, &)
is needed for our calculation. The quantum-
fluctuation operators are projected out by use of

Eq- (7)7 Vcnp = <Adc : ]i‘ *> and Vs 0,7 =
(Ady - }: oo *).  This projection allows us to obtain an

analytical expression for the second-order quadrature
correlator in the time domain:

G(T> 7/7 f)/4 = <Aa’c (T> f)Aa’C (Tl, §)>

i
= [ dY % 6 o),
27 2w

ENFL(, DFO), )
[ SRV, N FA0,7) + Fuf (0, 7]
w

g <VpVC(Q> f))[fp(T)fc((L Tl) + fp(Tl)fc(Q, 7)]

+ (VD7) + (VB (D (7)) 5 ®)
(VaVe(Q, €)y = —(m/4)sech(mQ/2)eos[(1 + Q?)¢/2],
(VpVelQ, £)) = (70 /12)sech(7Q/2)cos[(1 + Q2)¢/2],
(Ve(Q, OV, ) = B(Q,Q')cos[(Q* — Q)¢ /2]

— A(Q,Q)cos[(1 + (0% + Q?)/2)&],

L (Q+Q2-600' -2 7(Q+Q)/12
A= T e+ 1) sinhl7(@ + 0)/2]
o (Q-0P+4 @@ -0)/12

B(Q,0') = Q2+ 1)(Q”2 + 1) sinh[#(Q — Q/)/2] ’
+(7/2)6(Q — Q) ©)
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Fig. 1. Top, gray-scale visualization of the optimum filter
response |H(w)|2,;, where white and black correspond to
0 and 1, respectively. Bottom, Fano factor obtained for a
square filter with ¢ = 0.18 (dashed curve) and the optimum
filter (solid curve); total loss « for the square filter (dotted —
dashed line) and the optimum filter (dotted curve). In
both plots distance is in soliton periods.
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Fig. 2. Top, normally ordered quadrature-noise correlator
Gy(w, o', £). Bottom, frequency response |H (w) I(Z,pt of the
optimum filter (interpolated circles), amplitude-quadrature
variance Gy (w, w, &) (dotted curve), and zero-frequency-to-
sideband correlation function Gy (0, w, ¢) (dashed curve).
All functions are shown for z = 2¢/7 = 10.73.

and (V,,2) = 1/2,(V,2) = 1/6.

We have numerically evaluated the integrals in the
correlator in Eq. (8) and taken its Fourier transform
to get to a form that is useful for the optimum
frequency-filtering problem. Note that, in the absence
of filtering, only the (V,2) term contributes to the
Fano factor, making it equal to 1 because, owing to
orthogonality, all the other terms integrate to zero in
Eq. (6). This fact makes the role of the filter clear, as
it permits mixing in of the negatively correlated terms
in Eq. (8). The noise reduction takes place mainly
because of the (V,,V.) term, which describes the fact
that an increasing photon number causes an increased
soliton bandwidth, thereby resulting in a higher loss
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introduced by the spectral filter. We observe here
that the physical symmetry of the problem suggests an
optimum filter function that is even in the frequency
domain. Hence the terms that contain f, do not
contribute to the optimally filtered noise.

With the form of the noise correlator in hand,
we are able to find the optimum filter frequency
response |H (w)lgpt by minimizing the Fano factor.
Because of the constraint that 0 < |H (w)|? < 1, analyti-
cal optimization by variational methods is impractical.
Instead, we utilized a numerical quasi-Newton con-
strained optimization algorithm. The resultant filter
shape along with the corresponding Fano factor and
the filter loss o = [1 — (N,)/(N)] is shown in Fig. 1
as a function of the propagation distance z = 2¢/7
in soliton periods. We have also plotted the results
for a square filter with its transmission bandwidth
adjusted (o = 0.18) for maximum noise reduction at
z = 3. For this filter our results are in an excel-
lent agreement with those in Ref. 3. As can be seen
from Fig. 1, the best noise reduction of =6.5dB is
achieved for z = 3, where the optimum filter is close
to a square shape. The effect of optimization becomes
evident for z > 3, where the optimum filter acquires
more-complicated shapes to take advantage of the fast
oscillations that develop in the continuum part of the
correlator Gy (w, w’, £), as illustrated in Fig. 2.

In conclusion, it is mainly the correlations between
the continuum and the soliton photon number that lead
to the quantum-noise reduction after spectral filtering.
We found the optimum filter that establishes a theoret-
ical limit on the observable noise reduction. For the
fiber lengths up to three soliton periods, at which the
best noise reduction occurs, the square filter is shown
to be a good approximation to the optimum filter. For
longer lengths, however, the optimum filter shape de-
velops a number of sidebands, resulting in a clear im-
provement over the square filter.

The authors acknowledge useful discussions with A.
Mecozzi and J. Nocedal. This work was supported in
part by the U.S. Office of Naval Research.
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