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We present the quantum theory of a spatially-multimode traveling-wave phase-sensitive optical parametric
amplifier (OPA) pumped by a beam with arbitrary spatial profile. By using Green’s functions of the classical
OPA, we derive the normally-ordered quadrature correlators at the OPA output, which provide complete
quantum description of the phase-sensitive OPA and enable determination of its independently-squeezed
eigenmodes. Two analytically treatable examples of plane-wave pump and infinite spatial bandwidth of the
crystal are discussed in detail.
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1. Introduction

Spatially-broadband optical parametric amplifiers

(OPAs) are important for the generation of correlated

modes for quantum information processing as well as

for noiseless amplification of images, with recent work

nicely summarized in [1,2]. The latter application

requires phase-sensitive OPAs with strongly

focused pump beams in either traveling-wave [3,4]

or self-imaging-cavity [5] configurations. While the

classical traveling-wave OPA with plane-wave pump
has a well known analytical solution [6,7] that is

straightforwardly extendable to the quantum case, the

inhomogeneous (i.e. spatially-varying) pump case

requires numerical modeling even for the classical

signal [8], unless the nonlinear medium of the OPA is

very short. Although computationally efficient numer-

ical methods based on Hermite–Gaussian and

Laguerre–Gaussian mode expansions have been

developed for both cavity-based [9] and traveling-wave

[10] OPAs for some pumping configurations,
determination of the complete quantum properties of

the OPAs from numerical modeling have remained a

serious challenge.
In this work, we provide a general framework

relating the complete quantum description of the

traveling-wave phase-sensitive OPA with arbitrary

pump to Green’s function of the underlying classical

propagation equation, which is obtainable by numer-

ical or (in rare instances) analytical methods. By

diagonalizing the derived quantum correlators, we

show that a set of independently-squeezed orthogonal

modes (eigenmodes) of the OPA can be obtained,

in analogy to the Karhunen–Loève expansion for

classical random processes. Such eigenmodes of the

traveling-wave OPA are also related to the supermodes

of a self-imaging-cavity-based OPA studied in [11].

The analysis of the present paper serves as a basis

for our determination of the actual OPA eigenmodes

via numerically-obtained Green’s functions in

Hermite–Gaussian representation [12].

2. Definitions from classical free-space propagation

A detailed theory of parametric amplification of

multimode fields is summarized in a recently published

book [1]. Here, we concentrate on OPA equations in

paraxial approximation with undepleted pump.

Assuming that the signal, idler, and pump fields are

polarized, we look for solutions in the form

eð~r, tÞ ¼ Eð~�, zÞeiðkz�!tÞ þ c:c:, ð1Þ

where Eð~�, zÞ is a slowly-varying field envelope, ~� is

a transverse vector with coordinates (x, y), and the

intensity is given by

Ið~�, zÞ ¼ 2"0ncjEð~�, zÞj
2: ð2Þ
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In the presence of a strong pump Epð~�, zÞ at frequency
!p, signal electric field Esð~�, zÞ at frequency !s is

coupled to the idler electric field Eið~�, zÞ at frequency
!i¼!p�!s through the following equation:

@Es

@z
¼

i

2ks
r2
�Es þ

i!sdeff
nsc

EpE
�
i e

iDkz, ð3Þ

where Dk¼ kp� ks� ki is the wavevector mismatch,

deff is the effective nonlinear coefficient accounting for

the field polarizations and crystal orientation, and

the equation for the idler beam is obtained by

interchanging subscripts s and i in Equation (3).

Equation (3) describes the traveling-wave OPA in

paraxial approximation with a pump of arbitrary

spatial profile.
Let us introduce the spatial-frequency (~q ) domain

through the Fourier transform

~Eð~q, zÞ ¼

ð
Eð~�, zÞe�i~q~�d~� ð4Þ

and the inverse Fourier transform

Eð~�, zÞ ¼

ð
~Eð~q, zÞei~q~�

d~q

ð2�Þ2
: ð5Þ

In the absence of the pump (Ep¼ 0), Equation (3) is

reduced to the paraxial Helmholtz equation, whose

solution in the Fourier domain is given by

~Eð~q, zÞ ¼ ~Eð~q, 0Þ exp �i
q2

2k
z

� �
, ð6Þ

which translates into the following spatial-domain

solutions (Fresnel integrals):

Eð~�, zÞ ¼
k

2�iz

ð
Eð~�0, 0Þ exp

ikj~�� ~�0j2

2z

� �
d~�0, ð2DÞ

ð7Þ

Eðx,zÞ ¼

ffiffiffiffiffiffiffiffi
k

2�z

r
e�i�=4

ð
Eðx0,0Þexp

ikðx�x0Þ2

2z

� �
dx0, ð1DÞ

ð8Þ

where the kernels of integrals in Equations (7) and (8)

are, respectively, the 2D and 1D Green’s functions

Gð~�, ~�0, zÞ ¼
k

2�iz
exp i

kj~�� ~�0j2

2z

� �
, ð2DÞ ð9Þ

Gðx, x0, zÞ ¼

ffiffiffiffiffiffiffiffi
k

2�z

r
e�i�=4 exp i

kðx� x0Þ2

2z

� �
, ð1DÞ

ð10Þ

i.e. the solutions of the paraxial Helmholtz equation

satisfying the initial conditions

Gð~�, ~�0, 0Þ ¼ �ð~�� ~�0Þ, ð2DÞ ð11Þ

Gðx, x0, 0Þ ¼ �ðx� x0Þ: ð1DÞ ð12Þ

3. Degenerate OPA

Assuming the signal and idler beam to have the same

frequency and polarization, we can drop the s and

i subscripts. We can express the signal field in terms

of two real-valued quadratures,

Eð~�, zÞ ¼ Xð~�, zÞ þ iYð~�, zÞ, ð13Þ

so that the solution is given by

Eð~�, zÞ ¼

ð
½Gxð~�, ~�

0, zÞXð~�0, 0Þ þ iGyð~�, ~�
0, zÞYð~�0, 0Þ�d~�0,

ð14Þ

where Gxð~�, ~�
0, zÞ and iGyð~�, ~�

0, zÞ are the Green’s

functions of Equation (3), i.e. its solutions with initial

conditions

Gxð~�, ~�
0, 0Þ ¼ �ð~�� ~�0Þ,

iGyð~�, ~�
0, 0Þ ¼ i�ð~�� ~�0Þ:

ð15Þ

The solution (14) can be re-written in vector form as

Eð~�, zÞ ¼

ð
Gð~�, ~�0, zÞEð~�0, 0Þ d~�0, ð16Þ

where

Eð~�, zÞ ¼
Xð~�, zÞ
Yð~�, zÞ

� �
, ð17Þ

Gð~�, ~�0, zÞ ¼
Cxð~�, ~�

0, zÞ Cyð~�, ~�
0, zÞ

Sxð~�, ~�
0, zÞ Syð~�, ~�

0, zÞ

� �
, ð18Þ

and the elements of real matrix G in Equation (18) are

related to Gx and Gy of Equation (14) as follows:

Gxð~�, ~�
0, zÞ ¼ Cxð~�, ~�

0, zÞ þ iSxð~�, ~�
0, zÞ,

Gyð~�, ~�
0, zÞ ¼ Syð~�, ~�

0, zÞ � iCyð~�, ~�
0, zÞ: ð19Þ

Note that Equation (16) can also be written in the

spatial-frequency domain as

~Eð~q, zÞ ¼

ð
~Gð~q, � ~q0, zÞ~Eð~q0, 0Þ

d~q0

ð2�Þ2
, ð20Þ

where

~Eð~q, zÞ ¼
~Xð~q, zÞ
~Yð~q, zÞ

� �
¼

~Eð~q, zÞþ ~E�ð�~q, zÞ
2

~Eð~q, zÞ� ~E�ð�~q, zÞ
2i

" #
ð21Þ
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is the Fourier transform of electric field in equation
(17), and ~Gð~q, ~q0, zÞ is the Fourier transform of the
Green’s function (18) with respect to both ~� and ~�0.

3.1. Quantum description of the degenerate OPA

Since Equation (3) is linear, it (as well as all the other
formulae above) also holds in the quantum case by
assuming the signal electric field to be an operator. It is
convenient to normalize this operator so as to produce
the following commutation relations:

½Eð~�, zÞ,Eþð~�0, zÞ� ¼ �ð~�� ~�0Þ,

½Eð~�, zÞ,Eð~�0, zÞ� ¼ 0:
ð22Þ

Preservation of the commutators (22) during the field
evolution in the OPA requires thatð
½Cxð~�, ~�

00,zÞCyð~�
0, ~�00,zÞ�Cyð~�, ~�

00,zÞCxð~�
0, ~�00,zÞ�d~�00 ¼ 0,ð

½Sxð~�, ~�
00,zÞSyð~�

0, ~�00,zÞ�Syð~�, ~�
00,zÞSxð~�

0, ~�00,zÞ�d~�00 ¼ 0,ð
½Cxð~�, ~�

00,zÞSyð~�
0, ~�00,zÞ�Cyð~�, ~�

00,zÞSxð~�
0, ~�00,zÞ�d~�00

¼ �ð~�� ~�0Þ,ð
½Syð~�, ~�

00,zÞCxð~�
0, ~�00,zÞ�Sxð~�, ~�

00,zÞCyð~�
0, ~�00,zÞ�d~�00

¼ �ð~�� ~�0Þ,

ð23Þ

which can be expressed in the matrix form asð
Gð~�, ~�00,zÞJTGT

ð~�0, ~�00,zÞJd~�00 ¼
�ð~�� ~�0Þ 0

0 �ð~�� ~�0Þ

� �
,

ð24Þ

where

JTGT
ð~�, ~�0, zÞJ ¼

Syð~�, ~�
0, zÞ �Cyð~�, ~�

0, zÞ
�Sxð~�, ~�

0, zÞ Cxð~�, ~�
0, zÞ

� �
: ð25Þ

Equation (24) means that the transformation in
Equation (16) is symplectic, i.e. it preserves an
antisymmetric matrix

J ¼
0 1
�1 0

� �
: ð26Þ

Assuming the state at the input of the OPA to be
vacuum (coherent state is treated the same way by
separating the classical mean field from the vacuum
fluctuations), we can completely describe the quantum
properties of the output light by a correlation matrix

Rð~�, ~�0, zÞ ¼ 4�
hXð~�, zÞXð~�0, zÞi hXð~�, zÞYð~�0, zÞi
hYð~�, zÞXð~�0, zÞi hYð~�, zÞYð~�0, zÞi

� �
,

ð27Þ

whose value at the OPA input is

Rð~�, ~�0, 0Þ ¼ �ð~�� ~�0Þ �
1 i
�i 1

� �
: ð28Þ

The elements of the correlation matrix in Equation

(27), to be referred to as the correlators, are given by

hXð~�, zÞXð~�0, zÞi ¼
1

4

ð
½Cxð~�, ~�

00, zÞCxð~�
0, ~�00, zÞ,

þ Cyð~�, ~�
00, zÞCyð~�

0, ~�00, zÞ�d~�00

hYð~�, zÞYð~�0, zÞi ¼
1

4

ð
½Sxð~�, ~�

00, zÞSxð~�
0, ~�00, zÞ

þ Syð~�, ~�
00, zÞSyð~�

0, ~�00, zÞ� d~�00,

hXð~�, zÞYð~�0, zÞi ¼
i

4
�ð~�� ~�0Þ þ hXð~�, zÞYð~�0, zÞiN,

hYð~�, zÞXð~�0, zÞi ¼ �
i

4
�ð~�� ~�0Þ þ hYð~�, zÞXð~�0, zÞiN,

hXð~�, zÞYð~�0, zÞiN ¼
1

4

ð
½Cxð~�, ~�

00, zÞSxð~�
0, ~�00, zÞ

þ Cyð~�, ~�
00, zÞSyð~�

0, ~�00, zÞ� d~�00,

hYð~�, zÞXð~�0, zÞiN ¼
1

4

ð
½Sxð~�, ~�

00, zÞCxð~�
0, ~�00, zÞ

þ Syð~�, ~�
00, zÞCyð~�

0, ~�00, zÞ� d~�00,

ð29Þ

where the subscript N denotes a normally-ordered

correlator. Eliminating the delta-function from the off-

diagonal elements of Equation (27) yields a related

correlation matrix

R0ð~�, ~�0,zÞ¼ 4�
hXð~�,zÞXð~�0,zÞi hXð~�,zÞYð~�0,zÞiN
hYð~�,zÞXð~�0,zÞiN hYð~�,zÞYð~�0,zÞi

� �
ð30Þ

with initial conditions

R0ð~�, ~�0, 0Þ ¼ �ð~�� ~�0Þ �
1 0
0 1

� �
: ð31Þ

One can also see that R0ð~�, ~�0, zÞ ¼ R0ð~�, ~�0, 0Þ
þR0Nð~�, ~�

0, zÞ, where R0Nð~�, ~�
0, zÞ has zero initial

condition and is given by Equation (30) with the

diagonal-element correlators replaced by the corre-

sponding normally-ordered correlators. It is easy to

show that

R0ð~�, ~�0, zÞ ¼

ð
Gð~�, ~�00, zÞGT

ð~�0, ~�00, zÞd~�00: ð32Þ

In the spatial-frequency domain, this correlation

matrix is given by

~R0ð~q, ~q0, zÞ ¼

ð
R0ð~�, ~�0, zÞe�i~q~�e�i~q

0 ~�0d~�d~�0

¼

ð
~Gð~q, ~q00, zÞ~G

T
ð~q0, � ~q00, zÞ

d~q00

ð2�Þ2
: ð33Þ
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The Green’s functions in Equation (14) can, in
general, be found numerically (analytical solutions are
known for the case of a plane-wave pump and the case
of a very short crystal with inhomogeneous pump),
which enables the evaluation of the correlators in
Equations (27), (29), (30), (32), and (33).

3.2. Modes of maximum squeezing and
anti-squeezing

Let us project the amplified light onto a mode

ELO ¼
XLOð~�Þ
YLOð~�Þ

� �
, ð34Þ

called the local oscillator (LO) mode. The detected
squeezing factor (measured noise normalized by the
standard quantum limit) is given by

�ðzÞ ¼

Ð Ð
ET
LOð~�ÞRð~�, ~�

0, zÞELOð~�
0Þ d~�d~�0Ð

ET
LOð~�ÞELOð~�Þ d~�

, ð35Þ

where the kernel Rð~�, ~�0, zÞ obtained from Equation
(27) is Hermitian, i.e.

Rþð~�, ~�0, zÞ ¼ Rð~�0, ~�, zÞ: ð36Þ

Equation (35) would still hold if we replace the kernel
Rð~�, ~�0, zÞ by R0ð~�, ~�0, zÞ, which is also Hermitian, but is
more convenient for numerical evaluations. The pro-
jection (35) onto the LO mode can also be done in the
spatial-frequency domain:

�ðzÞ ¼

Ð Ð
~E
T

LOð~qÞ
~R0
�
ð~q, ~q0, zÞ~ELOð~q

0Þ
d~qd~q0

ð2�Þ4Ð
~E
T

LOð~qÞ
~E
�

LOð~qÞ
d~q

ð2�Þ2

, ð37Þ

where

~E
�

LOð~qÞ ¼
~ELOð�~qÞ ð38Þ

and

~R0
�
ð~q, ~q0, zÞ ¼ ~R0ð�~q, � ~q0, zÞ: ð39Þ

Once we obtain the correlation matrix Rð~�, ~�0, zÞ or
R0ð~�, ~�0, zÞ from the Green’s functions, we can find the
extrema of the functional (35) (known as the Rayleigh
quotient) as eigensolutions of the Fredholm integral
equationð

R0ð~�, ~�0, zÞE�LOð~�
0Þ d~�0 ¼ �ðzÞE�LOð~�Þ, ð40Þ

which defines a complete set of orthogonal
uncorrelated modes E�LOð~�Þ, classified by their
squeezing factors �. This procedure is a quantum
analog of the standard Karhunen–Loève expansion. If

E�LOð~�Þ ¼
XLOð~�Þ
YLOð~�Þ

� �
ð41Þ

is an eigenmode of Equation (40) with eigenvalue �5 1
(squeezed quadrature), then

E
1=�
LOð~�Þ ¼ JE�LOð~�Þ ¼

YLOð~�Þ
�XLOð~�Þ

� �
ð42Þ

is also an eigenmode of Equation (40) with eigenvalue
1/�4 1 (anti-squeezed quadrature). The mode E

1=�
LOð~�Þ

is a ��/2-shifted version of E�LOð~�Þ. Note that in the
spatial-frequency domain, Equation (40) takes the formð

~R0ð~q, � ~q0, zÞ~E
�

LOð~q
0Þ

d~q0

ð2�Þ2
¼ �ðzÞ~E

�

LOð~qÞ: ð43Þ

Thus, by solving Equation (40) one can obtain the
shapes of the independently-squeezed modes, and their
spectrum of squeezing/anti-squeezing, for an arbitrary
pump profile. This will completely answer the
questions about the effective number of amplified
modes and their spatial profiles. Possibilities for
additional analysis include (a) iteration of the pump
profile to maximize the number of well-squeezed
modes (i.e. spatial ‘bandwidth’ of squeezing) and (b)
finding a unitary transformation that maps these
modes to known modes, e.g. Hermite–Gaussian
modes or plane waves (in the latter case, � becomes
the spatial squeezing spectrum).

It is worth noting that the procedure for diagonal-
izing the case of multimode squeezing into indepen-
dently-squeezed modes was originally developed in a
general form in [13,14] for the case an arbitrary
quadratic Hamiltonian. The theory for optimal
(matched) LO with Equations (35) and (40) was
introduced in [15] and later applied to the calculation
of soliton squeezing in [16,17]. Similar decomposition
techniques were recently reviewed in [18] in the context
of parametric interactions in optical fibers.

3.3. Analytical solution 1: plane-wave pump

In the presence of a plane-wave pump
Epð~�, zÞ ¼ jEpje

i�p ¼ const, Equation (3) still preserves
the shift-invariance of the original paraxial Helmholtz
equation and is, therefore, easily solved in the Fourier
domain [6]:

~Esð~q, zÞ ¼ �ðq, zÞ ~Esð~q, 0Þ þ �ðq, zÞ ~E �i ð�~q, 0Þ, ð44Þ

where the coefficients of the input–output transforma-
tion are

�ðq, zÞ ¼ cosh 	z�
iDkeff
2	

sinh 	z

� �

� exp i
Dkeff
2

z

� �
exp �i

q2

2ks
z

� �
,

�ðq, zÞ ¼ i

s
	
sinh 	z� exp i

Dkeff
2

z

� �
exp �i

q2

2ks
z

� �
,

ð45Þ
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q ¼ j~qj, the effective wavevector mismatch is

Dkeff ¼ kp � ks � ki þ
q2

2

1

ks
þ

1

ki

� �

¼ Dkþ
q2

2

1

ks
þ

1

ki

� �
,

ð46Þ

and the parametric gain coefficient is

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � Dk2eff=4

q
, ð47Þ

with


2 ¼ 
s

�
i ¼

!s!id
2
effIp

2"0nsninpc3
,


s ¼
!sdeff
nsc
jEpje

i�p :

Note that, in the degenerate case, the product of the

exponentials in Equation (45), containing the effective

wavevector mismatch and diffraction phase terms,

becomes simply exp(iDkz/2).
From this point on, we will assume wavelength-

and polarization-degenerate signal and idler waves,

which allows us to drop the s and i subscripts. Green’s

functions in the plane-wave pump case are given by

Gxð~�, ~�
0, zÞ ¼

ð
ei~qð~��~�

0Þ½�ðq, zÞ þ �ðq, zÞ�
d~q

ð2�Þ2

¼ Gxðj~�� ~�
0j, zÞ,

Gyð~�, ~�
0, zÞ ¼

ð
ei~qð~��~�

0Þ½�ðq, zÞ � �ðq, zÞ�
d~q

ð2�Þ2

¼ Gyðj~�� ~�
0j, zÞ, ð48Þ

where the m and � coefficients are taken from Equation

(45). In the spatial-frequency domain, the matrix form

of Green’s function is given by

~Gð~q, ~q0, zÞ ¼ ð2�Þ2�ð~qþ ~q0ÞMðq, zÞ, ð49Þ

where

Mðq, zÞ ¼
Reð�þ �Þ �Imð�� �Þ
Imð�þ �Þ Reð�� �Þ

� �
, ð50Þ

that is

~Eð~q, zÞ ¼Mðq, zÞ~Eð~q, 0Þ: ð51Þ

The correlation-matrix kernel ~R0ð~q, ~q0, zÞ is, therefore,
given by

~R0ð~q, ~q0, zÞ ¼ ð2�Þ2�ð~qþ ~q0ÞMðq, zÞMTðq, zÞ

¼ ð2�Þ2�ð~qþ ~q0Þ
j�þ ��j2 2Imð��Þ

2Imð��Þ j�� ��j2

" #
,

ð52Þ

the squeezing/anti-squeezing factor is determined by

�ðzÞ ¼

Ð
~E
T

LOð~qÞMðq, zÞM
Tðq, zÞ~E

�

LOð~qÞ
d~q

ð2�Þ2Ð
~E
T

LOð~qÞ
~E
�

LOð~qÞ
d~q

ð2�Þ2

, ð53Þ

and the independently squeezed modes are the
eigenvectors of the matrix MMT:

Mðq, zÞMTðq, zÞ~E
�

LOð~qÞ ¼ �ðzÞ
~E
�

LOð~qÞ: ð54Þ

One can easily see that the modes ~ELOð~qÞ correspond-
ing to different spatial frequencies are squeezed
independently. For each spatial frequency, there are
two eigenvalues,

�1 ¼ ðj�j þ j�jÞ
2, ð55Þ

�2 ¼ ðj�j � j�jÞ
2, ð56Þ

with corresponding eigenvectors given by

~E
�1
LOð~qÞ ¼

cos ’
sin’

� �
, ð57Þ

~E
�2
LOð~qÞ ¼

sin’
� cos’

� �
, ð58Þ

where

’ ¼
argð�Þ þ argð�Þ

2
, ð59Þ

and the second eigenvector represents the electric field
of the first shifted by ��/2. Note that the phase (59)
is the eigenmode’s phase at the output of the PSA.
It is different from the optimum input phase

� ¼ �
argð�Þ � argð�Þ

2
ð60Þ

that ensures maximum amplification. In other words,
light entering the PSA with optimum input phase (60)
will emerge from the PSA with output phase (59).
Similarly, input light phase shifted by ��/2 from the
phase (60) will emerge with ��/2 shift from phase (59).
The eigenvalues of Equations (55) and (56) are related
as �1¼ 1/�2, which is a consequence of the symplectic
transformation (16) leading to the condition
jmj2� j� 2j ¼ 1 for the Bogoliubov transformation (44).

From Equation (52), one can also obtain the
normally-ordered correlator in the spatial (~�)-domain as

R0ð~�, ~�0, zÞ ¼

ð1
0

Mðq, zÞJ0ðqj~�� ~�
0jÞ q dq=ð2�Þ

¼ R0ðj~�� ~�0j, 0Þ þ R0Nðj~�� ~�
0j, zÞ, ð61Þ

where J0 is the Bessel function and the initial correlator
value is given by Equation (31). The four matrix
elements of the correlator R0Nðj~�� ~�

0j,LÞ are plotted
as functions of � ¼ j~�� ~�0j in Figure 1(a) and
as functions of ~� ¼ ~�� ~�0 ¼ ð�x, �yÞ in Figure 2(a) for
a nonlinear crystal with parameter values similar to
those in [3,7] and �p¼��/2. The presence of the
off-diagonal elements indicates that the quantum field
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emerging from the OPA does not have a flat phase
front. Such distortion can be corrected by inserting a
Fourier-plane phase plate to rotate the phases of the
spatial-frequency components of the output field by
��(q) (for small parametric gains this can be approx-
imated by a simple telescope that images the center of
the crystal [7]). This transformation is equivalent to
multiplication of Equation (51) by the matrix

S ¼
cos’ sin’
� sin’ cos ’

� �
, ð62Þ

which transforms the correlation matrix of Equation
(52) into

S~R0ð~q, ~q0,zÞST¼ð2�Þ2�ð~qþ ~q0Þ
ðj�jþ j�jÞ2 0

0 ðj�j� j�jÞ2

� �
,

ð63Þ

with the corresponding spatial-domain normally-

ordered counterpart shown in Figures 1(b) and 2(b).

The singularity at ~� ¼ ~�0 is due to rectification of the

sinc function in the spatial-frequency domain, which
occurs when taking the absolute value of � [7].

3.4. Analytical solution 2: short crystal with
inhomogeneous pump

For sufficiently short crystals, the diffraction term

in Equation (3) can be neglected, and the resulting

equation takes the following form:

@Es

@z
¼

i!sdeff
nsc

EpE
�
i e

iDkz, ð64Þ

Figure 2. The diagonal and off-diagonal elements of the correlationmatrixR0Nð�,LÞ of Figure 1 shown in the (�x,�y)-plane without
(a) and with (b) a phase plate in the Fourier plane. (The color version of this figure is included in the online version of the journal.)

(a) (b)
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Figure 1. Diagonal and off-diagonal elements of the correlation matrix R0Nð�,LÞ of Equation (61) (where ~� ¼ ~�� ~�0 and � ¼ j~�j)
without (a) andwith (b) a phase plate in the Fourier plane. Parameter values for theOPA are the same as those in [3,7]: crystal length
L¼ 5.21 mm, Dk¼ 0, 
L¼ 0.88 [i.e. a phase-sensitive gain (|�|þ |�|)2¼ 5.8 for q¼ 0], signal wavelength �s¼ 1064 nm, refractive
index ns¼ 1.78, and pump phase �p¼��/2. (The color version of this figure is included in the online version of the journal.)
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or

@Es

@z
¼ i
sE

�
i e

iDkz, ð65Þ

where 
s¼!s deff Ep/(ns c), in general, is a complex

parameter that depends on the coordinate ~� (if the

pump is inhomogeneous). One can then introduce the

parameters m and � as

�ð~�, zÞ ¼ cosh 	z�
iDk
2	

sinh 	z

� �
� exp i

Dk
2

z

� �
,

�ð~�, zÞ ¼ i

s
	
sinh 	z � exp i

Dk
2

z

� �
,

ð66Þ

where

	ð~�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð~�Þ � Dk2=4

p
,


2 ¼ 
s

�
i ¼

!s!id
2
effIpð~�Þ

2"0nsninpc3
, ð67Þ

so that the solution takes the form of point-by-point

(pixel-by-pixel) field amplification:

Esð~�, zÞ ¼ �ð~�, zÞEsð~�, 0Þ þ �ð~�, zÞE
�
i ð~�, 0Þ: ð68Þ

In the degenerate case, we have

Gxð~�, ~�
0, zÞ ¼ ½�ð~�, zÞ þ �ð~�, zÞ� �ð~�� ~�0Þ,

Gyð~�, ~�
0, zÞ ¼ ½�ð~�, zÞ � �ð~�, zÞ� �ð~�� ~�0Þ, ð69Þ

and

Gð~�, ~�0, zÞ ¼Mð~�, zÞ � �ð~�� ~�0Þ, ð70Þ

where

Mð~�, zÞ ¼
Reð�þ �Þ �Imð�� �Þ
Imð�þ �Þ Reð�� �Þ

� �
: ð71Þ

From Equations (70) and (71) we can see that the

situation is very similar to the plane-wave pump case,

but, instead of the spatial-frequency domain, the same

input–output relations take place in the image domain.

Namely,

Eð~�, zÞ ¼Mð~�, zÞEð~�, 0Þ ð72Þ

and

R0ð~�, ~�0, zÞ ¼ �ð~�� ~�0Þ �Mð~�, zÞMTð~�, zÞ

¼ �ð~�� ~�0Þ
j�þ ��j2 2Imð��Þ

2Imð��Þ j�� ��j2

" #
, ð73Þ

so that the independently-squeezed modes are the

eigenvectors of the matrix MMT:

Mð~�, zÞMTð~�, zÞE�LOð~�Þ ¼ �ðzÞE
�
LOð~�Þ: ð74Þ

One can easily see that the modes E�LOð~�Þ correspond-
ing to different pixels of the image are squeezed

independently. For each pixel, there are two

eigenvalues,

�1 ¼ ðj�j þ j�jÞ
2, ð75Þ

�2 ¼ ðj�j � j�jÞ
2, ð76Þ

with corresponding eigenvectors

E
�1
LOð~�Þ ¼

cos ’
sin ’

� �
, ð77Þ

E
�2
LOð~�Þ ¼

sin ’
� cos ’

� �
, ð78Þ

where

’ ¼
argð�Þ þ argð�Þ

2
, ð79Þ

and the second eigenvector represents the electric

field of the first shifted by ��/2. Similar to our

discussion above for the plane-wave pump case, we

note that the phase (79) is the eigenmode’s phase at the

output of the PSA. It is different from the optimum

input phase

� ¼ �
argð�Þ � argð�Þ

2
ð80Þ

that ensures maximum amplification. In other words,

light entering the PSA with optimum input phase (80)

will emerge from the PSA with output phase (79).

Similarly, input light with phase shifted by ��/2 from

the phase (80) will emerge with ��/2 shift from phase

(79). The eigenvalues of Equations (75) and (76) are

related as �1¼ 1/�2, which is a consequence of the

symplectic transformation (16) leading to the condition

jmj2� j�j2¼ 1 for the Bogoliubov transformation (68).

4. Summary

We have presented a methodology for the complete

quantum description of a traveling-wave phase-

sensitive optical parametric amplifier (OPA) in terms

of its normally-ordered quadrature correlators that are

obtainable from the numerically or analytically solva-

ble Green’s function of the classical OPA propagation

equation. This approach applies to the case of a pump

beam with arbitrary spatial profile and enables deter-

mination of the independently-squeezed orthogonal

eigenmodes of the OPA. This methodology serves as

a basis for our study of the modes of the OPA with

an elliptical Gaussian pump beam, which will be

published elsewhere.
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